Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 180-187    DOI: 10.3785/j.issn.1006-754X.2018.02.008
    
Parameter optimization design for vibration isolation system of accurately controlled routinely operated seismic source
LI Qin1, ZHANG Kai1, HUANG Zhi-qiang1, LI Gang1, HAO Lei2
1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China;
2. Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Zhuozhou 072750, China
Download: HTML     PDF(3265KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The excessive amplitude of the weight of accurately controlled routinely operated seismic source (ACROSS) results in lowering output energy and signal to noise ratio (SNR) during the excitation. Since the vibration isolation system has a great influence on the weight vibration, the parameter optimization design is carried out. Based on the theory of mechanical system dynamics and semi-infinite space, the dynamics model of ACROSS was established. The amplification coefficient index was established as the evaluation of the weight amplitude, then the relationship between the index and the parameters of vibration isolation system was deduced, the influence of the key parameters such as the stiffness and damping ratio of vibration isolation system on the index was analyzed by MATLAB. It was found that the stiffness and damping ratio of vibration isolation system had a great influence on the amplitude of the weight in the process of excitation. The irrational parameter design may cause weight severe vibration and even resonance. On this basis, the optimization algorithm was designed based on the coordinate alternation method to find the optimal parameter combination between the stiffness and damping ratio under different weight. The results showed that the weight vibration amplitude of optimized ACROSS was significantly reduced in the scanning bandwidth, and the maximum amplitude was reduced by 75% after optimization. The research results provide reference and guidance for the design of ACROSS vibration isolation system and a new way to enhance the energy transfer rate and SNR of ACROSS.



Key wordsaccurately controlled routinely operated seismic source(ACROSS)      semi-infinite space      MATLAB      coordinate alternation method     
Received: 11 May 2017      Published: 28 April 2018
CLC:  TE19  
Cite this article:

LI Qin, ZHANG Kai, HUANG Zhi-qiang, LI Gang, HAO Lei. Parameter optimization design for vibration isolation system of accurately controlled routinely operated seismic source. Chinese Journal of Engineering Design, 2018, 25(2): 180-187.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.008     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/180


精密可控震源隔振系统参数优化设计

针对精密可控震源压重在激振作业中振幅过大会导致震源下传能量减小及信噪比降低,而隔振系统对震源压重的振动情况有较大影响,对隔振系统参数进行了优化设计。结合机械系统动力学及半无限空间理论建立震源振动动力学模型,采用压重振幅放大系数作为压重振动幅值大小的评价指标,分析压重振幅与隔震系统参数之间的关系,并利用MATLAB软件分别分析隔振系统刚度、阻尼比等关键参数对它的影响;分析发现隔振系统刚度与阻尼比在激振过程中对压重振幅有着较大的影响,不合理的参数设计会使压重剧烈振动甚至发生共振。在此基础上,基于坐标轮换法设计了相应的优化算法,并得到了扫描频宽范围内不同压重质量下隔振系统刚度和阻尼比的最优参数组合。研究结果表明:优化后的精密可控震源隔振系统压重振动幅值在整个扫描频宽内波动显著减小,振幅最大值较优化前减小了75%。研究结果为精密可控震源隔振系统设计提供了参考和指导,为提升震源能量传递率及信噪比提供了一种新思路。


关键词: 精密可控震源,  半无限空间,  MATLAB,  坐标轮换法 

[1] 王宝善,葛洪魁,王彬,等.利用人工重复震源进行地下介质结构及其变化研究的探索和进展[J].中国地震,2016,32(2):168-179. WANG Bao-shan, GE Hong-kui, WANG Bin, et al. Practices and advances in exploring the subsurface structure and its temporal evolution with repeatable artificial sources[J]. Earthquake Research in China, 2016, 32(2):168-179.
[2] 佟训乾,林君,姜弢,等.陆地可控震源发展综述[J].地球物理学进展,2012,27(5):1912-1921. TONG Xun-qian, LIN Jun, JIANG Tao, et al. Summary of development of land vibrator[J]. Progress in Geophysics, 2012, 27(5):1912-1921.
[3] 田建军,胡建华,庞超烈,等.在地震勘探作业中实施"绿色勘探"[J].油气田环境保护,2007,17(3):37-40,61. TIAN Jian-jun, HU Jian-hua, PANG Chao-lie, et al. Carrying out "the green exploration" in seismic exploration[J]. Environmental Protection of Oil & Gas Fields, 2007, 17(3):37-40, 61.
[4] 杨微,王宝善,葛洪魁,等.精密控制机械震源特征及信号检测方法[J].中国石油大学学报(自然科学版),2013,30(1):50-55,69. YANG Wei, WANG Bao-shan, GE Hong-kui, et al. Characteristics and signal detection method of accurately controlled routinely operated signal system[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 30(1):50-55, 69.
[5] 王洪体,庄灿涛,薛兵,等.精密主动地震监测[J].地球物理学报,2009,52(7):1808-1815. WANG Hong-ti, ZHUANG Can-tao, XUE Bing, et al. Precisely and actively seismic monitoring[J]. Chinese Journal of Geophysics, 2009, 52(7):1808-1815.
[6] 崔仁胜,周银兴,陈阳,等.我国精密可控震源主动探测研究进展[J].防灾科技学院学报,2016,18(4):21-29. CUI Ren-sheng, ZHOU Yin-xing, CHEN Yang, et al. Research progress in active monitoring of the controlled accurately seismic source in China[J]. Journal of Institute of Disaster Prevention, 2016, 18(4):21-29.
[7] 董一兵,胡斌,杨锐,等.河北赤城可控震源主动监测实验[J].华北地震科学,2015,33(4):6-13. DONG Yi-bing, HU Bin, YANG Rui, et al. Active monitoring experiment in Chicheng using precision seismic vibrator[J]. North China Earthquake Science, 2015, 33(4):6-13.
[8] 姜弢,林君,陈祖斌,等.相控震源对水平层状地下介质的高信噪比检测[J].仪器仪表学报,2006,27(11):1369-1372. JIANG Tao, LIN Jun, CHEN Zu-bin, et al. High signal-to-nosie ratio detection of horizontal layer underground medium with phased-array vibroseis[J]. Chinese Journal of Scientific Instrument, 2006, 27(11):1369-1372.
[9] 牛军川,田国会,宋孔杰.旋转机械主动隔振研究Ⅰ:功率流传递特性[J].山东工业大学学报,2001,31(4):301-305. NIU Jun-chuan, TIAN Guo-hui, SONG Kong-jie. Study on active isolation vibration partⅠ:transmission property of power flow[J]. Journal of Shandong University of Technology, 2001, 31(4):301-305.
[10] 邓东,马红伟,吴伟,等.KZ-34可控震源振动性能的研究与改进[J].物探装备,2009,19(S1):15-20. DENG Dong, MA Hong-wei, WU Wei, et al. Research and improvement about the vibration performance of KZ-34 type vibrator[J]. Equipment for Geophysical Prospecting, 2009, 19(S1):15-20.
[11] 李兆锋,刘士杰,李超超.振动筛双层隔振系统的设计研究[J].煤矿机械,2013,34(8):45-47. LI Zhao-feng, LIU Shi-jie, LI Chao-chao. Double layered isolation of linear vibration screener system design and research[J]. Coal Mine Machinery, 2013, 34(8):45-47.
[12] 李淑清,王亮亮,陶知非,等.KZ-28型可控震源高精度隔振系统研究[J].天津科技大学学报,2014,29(3):58-62. LI Shu-qing, WANG Liang-liang, TAO Zhi-fei, et al. Research on precision vibration isolation system of KZ-28 vibroseis[J]. Journal of Tianjin University of Science & Technology, 2014, 29(3):58-62.
[13] 王永芳,季颖,朱登杰,等.可控震源空气弹簧隔振系统分析及动力学仿真[J].物探装备,2015,25(4):215-218. WANG Yong-fang, JI Ying, ZHU Deng-jie, et al. Dynamic simulation of air spring in vibration isolation system of vibrator[J]. Equipment for Geophysical Prospecting, 2015, 25(4):215-218.
[14] SUNG T Y. Vibration in semi-infinite solids due to periodic surface loading[M]. Philadelphia:ASTM Special Technical Publication, 1953:10-13.
[15] 林君,陈鹏程,姜弢,等.浅层地震探测的可控震源信号设计[J].地球物理学进展,2004,19(4):807-811. LIN Jun, CHEN Peng-cheng, JIANG Tao, et al. The signal design of electrodynamic vibroseis for subsurface imaging[J]. Progress in Geophysics, 2004, 19(4):807-811.
[16] 刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001:152-176. LIU Yan-zhu, CHEN Li-qun. Nonlinear vibration[M]. Beijing:Higher Education Press, 2001:152-176.
[17] 成大先.机械设计手册:机械振动·机架设计[M].北京:化学工业出版社,2010:15-34. CHENG Da-xian. Machine design handbooks:mechanical vibration·rack design[M]. Beijing:Chemical Industry Press, 2010:15-34.
[18] 濮良贵.机械优化设计[M].西安:西北工业大学出版社,1991:118-119. PU Liang-gui. Mechanical optimal design[M]. Xi'an:Northwestern Polytechnical University Press, 1991:118-119.

[1] WANG Hong-gang, KANG Cun-feng, CHEN Kang-wen, JI Yuan-long, PU Qiu-ran, ZHANG Lei-yu. Study on effect of slider rocker mechanism on rehabilitation of triceps surae[J]. Chinese Journal of Engineering Design, 2021, 28(6): 687-693.
[2] WANG Chao, SUN Wen-xu, MA Xiao-jing, CHEN Ji-yang, LUAN Yi-zhong, MA Si-le. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6): 765-770.
[3] ZHENG Ying-jie, NIU Xing-hua, GAO Wei-guo, ZHANG Da-wei, LIU Teng. Study on design method and control strategy of differential temperature control system for precision machine tools[J]. Chinese Journal of Engineering Design, 2018, 25(4): 472-480.
[4] CAI Yu-qiang, ZHU Dong-sheng. Analysis of crankshaft fatigue life of high-speed crank press based on dynamics simulation[J]. Chinese Journal of Engineering Design, 2017, 24(6): 680-686.
[5] HUO Xiao, SUN Wen-lei, TAO Qing, KANG Jin-sheng, LI Zhao-bo, WANG Shou-dong. Seat comfort test and evaluation based on sitting posture analyses[J]. Chinese Journal of Engineering Design, 2017, 24(3): 286-294.
[6] WANG Ai-guo, CHEN Jian-wei. Simulation for control system of 3-RPS parallel mechanism based on MATLAB[J]. Chinese Journal of Engineering Design, 2016, 23(2): 172-180.
[7] ZHOU Kui, WANG Wen-Ge, XIAO Bo. Research on electromechanical co-simulation of multi-axis drum system synchronization control[J]. Chinese Journal of Engineering Design, 2013, 20(5): 368-374.
[8] LIU Lin, TANG Meng. Hybrid magnetic suspension platform control design and implementation based on model design methodology[J]. Chinese Journal of Engineering Design, 2012, 19(6): 428-433.
[9] SONG Tian-Jia, CHEN Shao, MIAO Li-Dong, SUN Xun. Application of xPC target in controlling the AC servo motor on an electric power steering test platform[J]. Chinese Journal of Engineering Design, 2009, 16(6): 447-451.
[10] CHEN Zhao-Bing, GUO Jin, JIANG Wei-Wei. Servo design of UV/IR complex warning system based on DSP[J]. Chinese Journal of Engineering Design, 2009, 16(1): 7-11.
[11] BAI Ji-Ping,XUE Zhao. MATLAB realization of dynamic characteristics of new type marine pneumatic digital valve[J]. Chinese Journal of Engineering Design, 2007, 14(3): 215-219.
[12] BAO He-Yun, ZHU Ru-Peng. Optimization design of 2-stage star gear train based on Matlab[J]. Chinese Journal of Engineering Design, 2005, 12(4): 232-235.
[13] LIU Guo-Guang. Cylindricity error evaluation based on Matlab[J]. Chinese Journal of Engineering Design, 2005, 12(4): 236-239.
[14] BAI Ji-Ping, YU Zhe-Qing, RUAN Jian. Analysis on static characteristics of 2D pneumatic digital servo valve[J]. Chinese Journal of Engineering Design, 2005, 12(3): 172-176.
[15] LUO You-Xin, LI Da-Zhi. Finding all solutions to forward displacement analysis problem of
6-SPS parallel robot mechanism with chaos-iteration method
[J]. Chinese Journal of Engineering Design, 2003, 10(2): 70-74.