Please wait a minute...
工程设计学报  2024, Vol. 31 Issue (5): 653-662    DOI: 10.3785/j.issn.1006-754X.2024.04.130
摩擦学与表面/界面技术     
陀螺仪浮子组件胶接结构参数对结构静动态性能影响分析
高国良1,2(),贾一鸣1,2,王朝仕1,2,潘志富1,2,王晨1,2,洪军1,2,林起崟1,2()
1.西安交通大学 机械工程学院,陕西 西安 710049
2.西安交通大学 现代设计及转子轴承系统教育部重点实验室,陕西 西安 710049
Analysis of influence of parameters of adhesive connection structure of gyroscope float assembly on static and dynamic performances
Guoliang GAO1,2(),Yiming JIA1,2,Chaoshi WANG1,2,Zhifu PAN1,2,Chen WANG1,2,Jun HONG1,2,Qiyin LIN1,2()
1.School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
 全文: PDF(3431 KB)   HTML
摘要:

为了减小高精度陀螺仪浮子组件胶接结构的装配应力,保证结构的稳定性,开展了胶接结构参数对其静动态性能的影响研究。建立了陀螺仪浮子组件胶接结构的有限元模型,并分别以剪切应力分布的均匀性和固有频率作为胶接结构静态和动态性能的表征,研究了胶层厚度、胶层长度、浮筒厚度和胶层形状等对结构静态和动态性能的影响。研究结果表明:在一定范围内增大胶层厚度和长度,并采用抛物线形胶层有助于扩大胶层的优势承载区域,有效改善应力分布的均匀性;合理增大浮筒厚度能使胶接结构的前六阶固有频率下降,且阶数越大,下降幅度越大;胶层厚度对胶接结构动态性能的影响较小。研究结果对陀螺仪组件的设计和研究具有一定的指导意义。

关键词: 胶粘连接装配结构装配连接表面静态性能动态性能    
Abstract:

In order to reduce the assembly stress in the adhesive connection structure of high precision gyroscope float assembly and ensure the structural stability, the influence of the adhesive connection structural parameters on its static and dynamic properties was studied. The finite element model of the adhesive connection structure of the gyroscope float assembly was developed, and the uniformity of shear stress distribution and natural frequency were used to characterize the static and dynamic properties of the adhesive connection structure, and the influences of the adhesive layer thickness, adhesive layer length, buoy thickness and the adhesive layer shape on the static and dynamic properties of the structure were studied. The results showed that increasing the thickness and length of adhesive layer in a certain range and adopting parabolic adhesive layer could help to enlarge the advantageous bearing area of adhesive layer and improve the uniformity of stress distribution effectively. Additionally, reasonable increase of buoy thickness would decrease the first six natural frequencies of the adhesive connection structure with a greater reduction in higher orders. Conversely, the adhesive layer thickness had little influence on the dynamic property of adhesive connection structure. The research results have a certain guiding significance for the design and research of gyroscope components.

Key words: adhesive connection    assembly structure    assembly connecting surface    static performance    dynamic performance
收稿日期: 2024-04-07 出版日期: 2024-10-30
CLC:  V 241.5  
基金资助: 国家自然科学基金资助项目(52222508)
通讯作者: 林起崟     E-mail: 1272997622@qq.com;linqiyin@xjtu.edu.cn
作者简介: 高国良(1998—),男,硕士生,从事陀螺仪装配界面优化设计研究,E-mail: 1272997622@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高国良
贾一鸣
王朝仕
潘志富
王晨
洪军
林起崟

引用本文:

高国良,贾一鸣,王朝仕,潘志富,王晨,洪军,林起崟. 陀螺仪浮子组件胶接结构参数对结构静动态性能影响分析[J]. 工程设计学报, 2024, 31(5): 653-662.

Guoliang GAO,Yiming JIA,Chaoshi WANG,Zhifu PAN,Chen WANG,Jun HONG,Qiyin LIN. Analysis of influence of parameters of adhesive connection structure of gyroscope float assembly on static and dynamic performances[J]. Chinese Journal of Engineering Design, 2024, 31(5): 653-662.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.04.130        https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I5/653

图1  单搭接胶粘接头二维简化模型
图2  单搭接胶粘接头的胶层剪切应力和剥离应力
图3  陀螺仪浮子组件的结构
图4  陀螺仪浮子组件二维简化结构示意
图5  胶接结构和胶层的有限元模型
图6  胶层剪应力分布云图
图7  胶层轴向剪切应力变化曲线
图8  不同胶层厚度下胶层剪切应力变化曲线
图9  不同胶层厚度下胶层剪切应力极值和方差变化曲线
h/mmτmax/MPaτmin/MPaS2/MPa2
0.17.701.354.31
0.25.841.971.60
0.35.012.260.85
0.54.642.430.53
0.74.012.650.20
1.03.732.750.11
表1  不同胶层厚度下胶层剪切应力的极值和方差
图10  不同胶层长度下胶层剪切应力变化曲线
图11  不同胶层长度下胶层剪切应力极值和方差变化曲线
L/mmτmax/MPaτmin/MPaS2/MPa2
5.016.755.4720.19
7.58.893.114.25
105.841.971.60
153.331.450.30
202.361.060.12
表2  不同胶层长度下胶层剪切应力的极值和方差
图12  不同浮筒厚度下胶层剪切应力变化曲线
图13  不同浮筒厚度下胶层剪切应力极值和方差变化曲线
D1/mmτmax/MPaτmin/MPaS2/MPa2
14.642.330.48
25.372.151.08
35.841.971.60
56.092.431.51
76.172.671.29
106.272.831.21
表3  不同浮筒厚度下胶层剪切应力的极值和方差
图14  胶层形状示意
图15  不同胶层形状下胶层剪切应力变化曲线
图16  不同胶层形状下胶层剪切应力极值和方差变化曲线
胶层形状hmin/hmaxτmax/MPaτmin/MPaS2/MPa2
圆弧形1.004.642.430.53
0.754.002.100.39
0.503.651.610.58
0.254.311.021.28
抛物线形1.006.221.951.54
0.754.092.030.38
0.504.082.710.14
0.253.742.550.21
正弦形1.006.221.951.54
0.756.242.001.14
0.506.191.980.85
0.256.001.760.99
表4  不同胶层形状下胶层剪切应力的极值和方差
图17  不同胶层厚度下胶接结构前六阶固有频率的对比
图18  不同胶层厚度下胶接结构一阶固有频率的变化
图19  不同胶层长度下胶接结构前六阶固有频率的对比
图20  不同胶层长度下胶接结构一阶固有频率的变化
图21  不同浮筒厚度下胶接结构前六阶固有频率的对比
图22  不同浮筒厚度下胶接结构一阶固有频率的变化
1 赵云峰. 高性能胶黏剂密封剂在航天工业领域的应用[J]. 化学与粘合, 2014, 36(6): 446-450.
ZHAO Y F. Application of high-performance adhesives and sealants in aerospace industry[J]. Chemistry and Adhesion, 2014, 36(6): 446-450.
2 VOLKERSEN O. Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten[J]. Luftfahrtforschung, 1938, 15(1/2): 41-47.
3 GOLAND M, REISSNER E, 陈名甫. 胶合接点内的应力[J]. 力学季刊, 1966(4): 47-59.
GOLAND M, REISSNER E, CHEN M F. Stress in bonded joints[J]. Chinese Quarterly of Mechanics, 1966(4): 47-59.
4 HART-SMITH L J. Adhesive-bonded single-lap joints[R]. Washington: Douglas Aircraft Company, NASA, 1973.
5 OJALVO I U, EIDINOFF H L. Bond thickness effects upon stresses in single-lap adhesive joints[J]. AIAA Journal, 1978, 16(3): 204-211.
6 TSAI M Y, OPLINGER D W, MORTON J. Improved theoretical solutions for adhesive lap joints[J]. International Journal of Solids and Structures, 1998, 35(12): 1163-1185.
7 ALLMAN D J. A theory for elastic stresses in adhesive bonded lap joints[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1977, 30(4): 415-436.
8 CHEN D, CHENG S. An analysis of adhesive-bonded single-lap joints[J]. Journal of Applied Mechanics, 1983, 50(1): 109-115.
9 RENTON W J, VINSON J R. Analysis of adhesively bonded joints between panels of composite materials[J]. Journal of Applied Mechanics, 1977, 44(1): 101-106.
10 DELALE F, ERDOGAN F, AYDINOGLU M N. Stresses in adhesively bonded joints: A closed-form solution[J]. Journal of Composite Materials, 1981, 15(3): 249-271.
11 ADAMS R D, MALLICK V. A method for the stress analysis of lap joints[J]. The Journal of Adhesion, 1992, 38(3/4): 199-217.
12 ADAMS R D, PEPPIATT N A. Stress analysis of adhesive-bonded lap joints[J]. Journal of Strain Analysis for Engineering Design, 1974, 9(3): 185-196.
13 YANG C, PANG S S. Stress-strain analysis of single-lap composite joints under tension[J]. Journal of Engineering Materials and Technology, 1996, 118(2): 247-255.
14 BIGWOOD D A, CROCOMBE A D. Elastic analysis and engineering design formulae for bonded joints[J]. International Journal of Adhesion and Adhesives, 1989, 9(4): 229-242.
15 LUO Q T, TONG L Y. Linear and higher order displacement theories for adhesively bonded lap joints[J]. International Journal of Solids and Structures, 2004, 41(22/23): 6351-6381.
16 LUO Q T, TONG L Y. Analytical solutions for adhesive composite joints considering large deflection and transverse shear deformation in adherends[J]. International Journal of Solids and Structures, 2008, 45(22/23): 5914-5935.
17 LUO Q T, TONG L Y. Analytical solutions for nonlinear analysis of composite single-lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(2): 144-154.
18 WANG J L, ZHANG C. Three-parameter, elastic foundation model for analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 495-502.
19 ZHAO X, ADAMS R D, SILVA L F M DA. A new method for the determination of bending moments in single lap joints[J]. International Journal of Adhesion and Adhesives, 2010, 30(2): 63-71.
20 DARWISH S M. Analysis of weld-bonded dissimilar materials[J]. International Journal of Adhesion and Adhesives, 2004, 24(4): 347-354.
21 GUNNION A J, HERSZBERG I. Parametric study of scarf joints in composite structures[J]. Composite Structures, 2006, 75(1/2/3/4): 364-376.
22 LANG T P, MALLICK P K. Effect of spew geometry on stresses in single lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 1998, 18(3): 167-177.
23 OSNES H, ANDERSEN A. Computational analysis of geometric nonlinear effects in adhesively bonded single lap composite joints[J]. Composites Part B: Engineering, 2003, 34(5): 417-427.
24 JOUSSET P, RACHIK M. Pressure-dependent plasticity for structural adhesive constitutive modeling[J]. Journal of Adhesion Science and Technology, 2010, 24(11/12): 1995-2010.
25 CUI J, WANG R, SINCLAIR A N, et al. A calibrated finite element model of adhesive peeling[J]. International Journal of Adhesion and Adhesives, 2003, 23(3): 199-206.
26 SÜLÜ İ Y. Mechanical behavior of single-lap and double-lap adhesive joined composite parts[J]. Materials Testing, 2017, 59(11/12): 1019-1026.
27 WANG H, HAO X F, YAN K, et al. Ultrasonic vibration-strengthened adhesive bonding of CFRP-to-aluminum joints[J]. Journal of Materials Processing Technology, 2018, 257: 213-226.
28 WANG H, GAO C, CHEN Y Z, et al. Ultrasonic vibration-strengthened adhesive bonding of CFRP/aluminum alloy joints with anodizing pretreatment[J]. Journal of Metals, 2020, 72(10): 3472-3482.
[1] 李文娟,陈晓轩,龚立娇,陈旭东. 基于动态性能空间的优化控制方法设计[J]. 工程设计学报, 2014, 21(5): 456-468.
[2] 李素玲, 刘军营. 板簧轧机电液伺服控制系统的设计与实现[J]. 工程设计学报, 2007, 14(1): 44-47.