设计理论与方法 |
|
|
|
|
基于改进YOLOv5s的护帮板异常检测方法研究 |
张旭辉1,2( ),闫建星1( ),麻兵1,鞠佳杉1,沈奇峰1,吴雨佳1 |
1.西安科技大学 机械工程学院,陕西 西安 710054 2.陕西省矿山机电装备智能监测重点实验室,陕西 西安 710054 |
|
Research on abnormal detection method of side guard based on improved YOLOv5s |
Xu-hui ZHANG1,2( ),Jian-xing YAN1( ),Bing MA1,Jia-shan JU1,Qi-feng SHEN1,Yu-jia WU1 |
1.School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China 2.Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi'an 710054, China |
引用本文:
张旭辉, 闫建星, 麻兵, 鞠佳杉, 沈奇峰, 吴雨佳. 基于改进YOLOv5s的护帮板异常检测方法研究[J]. 工程设计学报, 2022, 29(6): 665-675.
Xu-hui ZHANG, Jian-xing YAN, Bing MA, Jia-shan JU, Qi-feng SHEN, Yu-jia WU. Research on abnormal detection method of side guard based on improved YOLOv5s[J]. Chinese Journal of Engineering Design, 2022, 29(6): 665-675.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.079
或
https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I6/665
|
1 |
魏文艳,刘清.一种用于保护矿井下综采工作面支架护帮板的自动控制系统和自动控制方法:201010279735.3[P].2013-01-02 WEI Wen-yan, LIU Qing. A kind of support plate used to protect the underground fully mechanized mining face automatic control system and automatic control method: 201010279735.3[P]. 2013-01-02
|
2 |
黄金福,王新军,李冰波,等.液压支架护帮板控制装置及其测量方法:201310087316.4[P].2013-06-19. HUANG Jin-fu, WANG Xin-jun, LI Bing-bo, et al. Hydraulic support guard plate control device and its measurement method: 201310087316.4[P]. 2013-06-19.
|
3 |
梁海权,王新军,黄金福,等.矿用液压支架状态监测装置及测量方法:201310451563.8[P].2014-01-15. LIANG Hai-quan, WANG Xin-jun, HUANG Jin-fu, et al. Condition monitoring device and measurement method of hydraulic support for mining: 201310451563.8[P]. 2014-01-15.
|
4 |
徐勇智.液压支架护帮板收放监测系统研究[D] .西安:西安科技大学,2016:1-52. XU Yong-zhi. Hydraulic support suard slate and sonitoring system research[D]. Xi'an: Xi'an University of Science and Technology, 2016: 1-52.
|
5 |
王渊,李红卫,郭卫,等.基于图像识别的液压支架护帮板收回状态监测方法[J].工矿自动化,2019,45(2):47-53. WANG Yuan, LI Hong-wei, GUO Wei, et al. Monitoring method of recovery state of hydraulic support guard plate based on image recognition[J]. Industrial and Mining Automation, 2019, 45(2): 47-53.
|
6 |
谢富,朱定局.深度学习目标检测方法综述[J].计算机系统应用,2022,31(2):1-12. XIE Fu, ZHU Ding-ju. Survey on deep learning object detection[J]. Computer Systems & Applications, 2022, 31(2): 1-12.
|
7 |
南柄飞,郭志杰,王凯,等.基于视觉显著性的煤矿井下关键目标对象实时感知研究[J].煤炭科学技术,2022,50(8):247-258 Bing-fei NAN, Guo Zhi-jie, WANG Kai, et al. Study on real-time perception of target ROI in underground coal mines based on visual saliency[J]. Coal Science and Technology, 2022, 50(8): 247-258.
|
8 |
XIE Tian-hua, LI Xin-xing, ZHANG Xiao-shuan, et al. Detection of Atlantic salmon bone residues using machine vision technology[J]. Food Control, 2021, 123: 107787.
|
9 |
周得永,高龙琴.基于YOLOv3的太阳能电池板缺陷检测[J].南方农机,2022,53(4):142-144. doi:10.3969/j.issn.1672-3872.2022.04.040 ZHOU De-yong, GAO Long-qin. Solar panel defect detection based on YOLOv3[J]. South Agricultural Machinery, 2022, 53(4): 142-144.
doi: 10.3969/j.issn.1672-3872.2022.04.040
|
10 |
张博尧,冷雁冰.基于YOLOv4网络模型的金属表面划痕检测[J].兵工学报,2022,43(1):214-221. ZHANG Bo-yao, LENG Yan-bing. Detection of metal surface scratch based on YOLOv4 network model [J]. Acta Armamentarii, 2022, 43(1): 214-221.
|
11 |
韩佳彤,张宏娜,李召波,等.基于YOLOV5网络模型的市政道路检测识别[J].内蒙古大学学报(自然科学版),2021,52(5):514-519. HAN Jia-tong, ZHANG Hong-na, LI Zhao-bo, et al. Municipal road detection and recognition based on YOLOV5 network model[J]. Journal of Inner Mongolia University (Natural Science Edition), 2021, 52(5): 514-519.
|
12 |
张全,张伟,杨先凤,等.融合YOLOv5-ResNet级联网络的烟火检测方法[J].安全与环境学报, 2021,42(5):1-10. ZHANG Quan, ZHANG Wei, YANG Xian-feng, et al. A fireworks detection method integrating YOLOv5-ResNet cascade network[J]. Journal of Safety and Environment, 2021, 42(5): 1-10.
|
13 |
李一鸣,王潇.基于YOLOv5s模型的轧钢表面缺陷检测[J].制造业自动化,2021,43(11):117-119. doi:10.3969/j.issn.1009-0134.2021.11.027 LI Yi-ming, WANG Xiao. Surface defect detection of rolled steel based on YOLOv5s model[J]. Manufacturing Automation, 2021, 43(11): 117-119.
doi: 10.3969/j.issn.1009-0134.2021.11.027
|
14 |
叶鸥,窦晓熠,付燕,等.融合轻量级网络和双重注意力机制的煤块检测方法[J].工矿自动化,2021,47(12):75-80. YE Ou, DOU Xiao-yi, FU Yan, et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industrial and Mining Automation, 2021, 47(12): 75-80
|
15 |
魏强.液压支架护帮板状态的自动检测研究[D]. 太原:太原科技大学,2020:1-10. WEI Qiang. Research on automatic detection of the state of hydraulic support guard plate[D]. Taiyuan: Taiyuan University of Science and Technology, 2020: 1-10.
|
16 |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. LongBeach, CA, USA, June 15-20, 2019.
|
17 |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), October 27-November 02, 2019.
|
18 |
TAN M, CHEN B, PANG R, et al. Mnasnet: Platform-aware neural architecture search for mobile[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA, June 15-20, 2019.
|
19 |
LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: Normalization-based attention module[J/OL]//arXiveprint: 2111.12419.[2022-02-10]. .
|
20 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany, September 8-14, 2018.
|
21 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regressionar[J]. Xiv, 2019. doi: 10.1609/aaai.v34i07.6999 .
doi: 10.1609/aaai.v34i07.6999
|
22 |
谭显东,彭辉.改进YOLOv5的SAR图像舰船目标检测[J].计算机工程与应用,2022,58(4):247-254. doi:10.3778/j.issn.1002-8331.2108-0308 TAN Xian-dong, PENG Hui. Improved YOLOv5 ship target detection in SAR image[J].Computer Engineering and Applications, 2022, 58(4): 247-254.
doi: 10.3778/j.issn.1002-8331.2108-0308
|
23 |
HE J, ERFANI S, MA X, et al. Alpha-IoU: A family of power intersection over union losses for bounding box regression[J]. Advances in Neural Information Processing Systems, 2021. doi: 10.48550/arXiv.2110.13675 .
doi: 10.48550/arXiv.2110.13675
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|