Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (5): 555-563    DOI: 10.3785/j.issn.1006-754X.2022.00.067
优化设计     
页岩气压缩机撬装模块系统散热分析及布局优化
黄志强1,2(),王智勇1,2,黄山1,2,秦飞虎3,杨金3
1.西南石油大学 机电工程学院,四川 成都 610500
2.石油天然气装备技术四川省科技资源共享服务平台,四川 成都 610500
3.中国石油集团济柴动力有限公司 成都压缩机分公司,四川 成都 610100
Heat dissipation analysis and layout optimization of skid mounted module system of shale gas compressor
Zhi-qiang HUANG1,2(),Zhi-yong WANG1,2,Shan HUANG1,2,Fei-hu QIN3,Jin YANG3
1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Oil and Gas Equipment Technology Science and Technology Resource Sharing Service Platform of Sichuan Province, Chengdu 610500, China
3.Chengdu Compressor Branch, CNPC (China National Petroleum Corporation) Jichai Power Co. , Ltd. , Chengdu 610100, China
 全文: PDF(6253 KB)   HTML
摘要:

页岩气压缩机在工作时易受到高温环境的影响,产生的大量余热积聚在隔声罩内,导致电机、管道、空冷器等过热,影响关键设备的使用寿命,严重威胁页岩气开采安全。因此,以DTY500型页岩气压缩机为研究对象,建立了压缩机撬装模块系统的散热仿真模型,开展其速度场和温度场特性仿真研究,并通过现场实验验证了仿真分析方法的正确性,最后对压缩机撬装模块进行布局优化。结果表明:进排风口布局优化前大部分高速流体并未覆盖电机、压缩缸、管道等热源区域,不利于设备的通风散热;优化后,系统的相对散热量提高了46.34%,散热效果显著提升。研究结果为压缩机撬装模块系统的优化设计提供了理论指导。

关键词: 页岩气压缩机通风散热相对散热量现场测试布局优化    
Abstract:

Shale gas compressor is vulnerable to high temperature environment during operation. A large amount of waste heat generated during operation accumulates in the acoustic enclosure, resulting in overheating of motor, pipe, air cooler, etc., affecting the service life of key equipment and seriously threatening the safety of shale gas exploitation. Therefore, the DTY500 shale gas compressor was taken as the research object, a heat dissipation simulation model of the compressor skid mounted module system was established, the velocity field and temperature field characteristics were simulated, and the correctness of the simulation analysis method was verified by field experiments. Finally, the layout of the compressor skid mounted module was optimized. The results showed that most of the high-speed fluid did not cover the heat source areas such as the motor, compression cylinder and pipeline before the layout optimization of the air inlet and outlet, which was not conducive to the ventilation and heat dissipation of the equipment; after optimization, the relative heat dissipation of the system was increased by 46.34%, and the heat dissipation effect was significantly improved. The research results provide theoretical guidance for the optimization design of compressor skid mounted module system.

Key words: shale gas compressor    ventilation and heat dissipation    relative heat dissipation    field test    layout optimization
收稿日期: 2021-11-01 出版日期: 2022-11-02
CLC:  TE 974  
基金资助: 中国石油集团济柴动力有限公司成都压缩机分公司科研项目(2019K014)
作者简介: 黄志强(1968—),男,四川眉山人,教授,博士生导师,博士,从事石油天然气装备等研究,E-mail:huangzq@swpu.edu.cnhttps://orcid.org/0000-0001-7809-3241
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄志强
王智勇
黄山
秦飞虎
杨金

引用本文:

黄志强,王智勇,黄山,秦飞虎,杨金. 页岩气压缩机撬装模块系统散热分析及布局优化[J]. 工程设计学报, 2022, 29(5): 555-563.

Zhi-qiang HUANG,Zhi-yong WANG,Shan HUANG,Fei-hu QIN,Jin YANG. Heat dissipation analysis and layout optimization of skid mounted module system of shale gas compressor[J]. Chinese Journal of Engineering Design, 2022, 29(5): 555-563.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.067        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I5/555

图1  压缩机撬装模块系统的组成
图2  压缩机撬装模块系统散热仿真模型
参数量值边界类型
电机发热量28 kW体热源
一级进气管道温度33.10 ℃温度壁面
一级排气管道温度85.00 ℃
二级进气管道温度50.93 ℃
二级排气管道温度118.00 ℃
表1  压缩机主要热源边界条件设置
图3  压缩机整体高流速区
图4  压缩机热源特征截面示意
图5  压缩机热源特征截面速度场
图6  压缩机整体高温区
图7  压缩机热源特征截面温度场
图8  DTY500型页岩气压缩机
图9  压缩机测点流速和温度的采集
图10  压缩机测点布局
图11  压缩机各测点流速和温度测试值与仿真值的对比
图12  撬装模块系统进排风口布局优化
排风口位置进风口位置
I1I2I3
O1I1-O1I2-O1I3-O1
O2I1-O2I2-O2I3-O2
O3I1-O3I2-O3I3-O3
表2  进排风口位置优化试验方案
优化方案相对散热量/W
I1-O112 430.7
I2-O116 048.7
I3-O116 405.5
I1-O215 585.6
I2-O217 017.5
I3-O217 830.9
I1-O315 880.8
I2-O317 445.2
I3-O318 192.7
表3  各优化方案下系统相对散热量
位置方案平均速度/(m/s)高速区占比/%平均温度/℃高温区占比/%
电机长轴截面I3-O20.5714.3645.2820.72
I3-O30.9221.4642.187.52
电机短轴截面I3-O20.8738.4742.745.99
I3-O30.8136.4142.353.14
后侧压缩缸短轴截面I3-O20.4216.3955.0213.60
I3-O30.9136.5743.026.02
表4  方案I3-O2和I3-O3下压缩机热源特征截面散热评价指标值
图13  原方案和I3⁃O3方案下压缩机整体高温区的对比
1 “碳达峰”、“碳中和”将重新定义经济版图[J].化工时刊,2021,35(3):46.
"Carbon Peak" and "Carbon Neutrality" will redefine the economic landscape[J]. Chemical Industry Times, 2021, 35(3): 46.
2 阮亮.中国终端能源消费演变规律及预测研究[D].北京:华北电力大学,2019:2-8.
RUAN Liang. On the evolution law and forecast of China's terminal energy consumption[D]. Beijing: North China Electric Power University, 2019: 2-8.
3 王彧嫣,樊大磊,李文博.2020年国内外油气资源形势分析及展望[J].中国矿业,2021,30(1):18-23. doi:10.12075/j.issn.1004-4051.2021.01.035
WANG Yu-yan, FAN Da-lei, LI Wen-bo. Analysis and outlook of domestic and international oil & gas resources in 2020[J]. China Mining Magazine, 2021, 30(1): 18-23.
doi: 10.12075/j.issn.1004-4051.2021.01.035
4 黄志强,黄琴,陈振,等.往复式压缩机撬装模块振动分析与优化研究[J].噪声与振动控制,2021,41(1):54-60. doi:10.3969/j.issn.1006-1355.2021.01.011
HUANG Zhi-qiang, HUANG Qin, CHEN Zhen, et al. Vibration analysis and optimization of skid-mounted module of reciprocating compressors[J]. Noise and Vibration Control, 2021, 41(1): 54-60.
doi: 10.3969/j.issn.1006-1355.2021.01.011
5 AWBI H B. Calculation of convective heat transfer coefficients of room surfaces for natural convection[J]. Energy and Buildings, 1998, 28(2): 219-227. doi:10.1016/s0378-7788(98)00022-x
doi: 10.1016/s0378-7788(98)00022-x
6 PARK H J, HOLLAND D. The effect of location of a convective heat source on displacement ventilation: CFD study[J]. Building and Environment, 2001, 36(7): 883-889. doi:10.1016/s0360-1323(01)00014-2
doi: 10.1016/s0360-1323(01)00014-2
7 胡玄,王凤岐,郭伟,等.灯泡贯流式水轮发电机通风系统流场的数值模拟[J].工程设计学报,2007,14(2):144-147,169. doi:10.3785/j.issn.1006-754X.2007.02.011
HU Xuan, WANG Feng-qi, GUO Wei, et al. Numerical simulation of flow field on ventilation system of flow-bulb hydrogenerator[J]. Chinese Journal of Engineering Design, 2007, 14(2): 144-147, 169.
doi: 10.3785/j.issn.1006-754X.2007.02.011
8 牛萌萌.天然气压缩机房通风系统设计及CFD模拟分析[D].西安:西安工程大学,2016:15-56.
NIU Meng-meng. Design and CFD simulation of ventilation system in natural gas compressor station[D]. Xi'an: Xi'an Polytechnic University, 2016: 15-56.
9 万鑫,苏亚欣,杨艳超.工业厂房自然通风的数值模拟及结构改进[J].中国安全科学学报,2008,18(8):103-108. doi:10.3969/j.issn.1003-3033.2008.08.017
WAN Xin, SU Ya-xin, YANG Yan-chao, et al. Numerical simulation and improvement of natural ventilation in an industrial workshop[J]. China Safety Science Journal, 2008, 18(8): 103-108.
doi: 10.3969/j.issn.1003-3033.2008.08.017
10 刘权,杨华启,郭斌.空压站通风散热数值模拟研究与优化分析[J].中国设备工程,2020(17):133-137. doi:10.3969/j.issn.1671-0711.2020.17.074
LIU Quan, YANG Hua-qi, GUO Bin. Numerical simulation and optimization analysis of ventilation and heat dissipation in an air compression station[J]. China Plant Engineering, 2020(17): 133-137.
doi: 10.3969/j.issn.1671-0711.2020.17.074
11 刘水长,谷正气,张勇,等.自卸车发动机舱内热流场分析及优化[J].中国机械工程,2015,26(12):1621-1625. doi:10.3969/j.issn.1004-132X.2015.12.011
LIU Shui-chang, GU Zheng-qi, ZHANG Yong, et al. Thermal characteristic analysis of a mining dump-truck engine compartment and optimization[J]. China Mechanical Engineering, 2015, 26(12): 1621-1625.
doi: 10.3969/j.issn.1004-132X.2015.12.011
12 WANG J, LIU X, CHEN S, et al. Reduced-scale model study on cable heat dissipation and airflow distribution of power cabins[J]. Applied Thermal Engineering, 2019, 160: 114068. doi:10.1016/j.applthermaleng.2019.114068
doi: 10.1016/j.applthermaleng.2019.114068
13 张树峰.中功率静音型柴油发电机组噪声分析及其隔声罩优化设计[D].成都:电子科技大学,2015:19-48.
ZHANG Shu-feng. Noise analysis of medium-power silent type diesel generator set and optimization of its acoustic enclosure[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 19-48.
14 杨晓.小型柴油发电机组隔声罩结构优化设计研究[D].天津:天津大学,2017:30-45.
YANG Xiao. Design and optimization of noise isolation hoods for small diesel generator set[D]. Tianjin: Tianjin University, 2017: 30-45.
15 DOU X, XIE D, WANG Z, et al. Improved buoyancy-driver hybrid ventilation system for multiple-heat-source industrial buildings[J]. Case Studies in Thermal Engineering, 2021,26: 101059. doi:10.1016/j.csite.2021. 101059
doi: 10.1016/j.csite.2021. 101059
16 王经.传热学与流体力学基础[M].上海:上海交通大学出版社,2007:118-124.
WANG Jing. Fundamentals of heat transfer and fluid mechanics[M]. Shanghai: Shanghai Jiaotong University Press, 2007: 118-124.
17 MILLS A F. Heat transfer[M]. Homewood: Richard D. Irwin, 1992: 178-196.
18 XIA Y, FU Y, LI J, et al. Numerical simulation of turbulent thermal convection based on LBM[J]. Modern Physics Letters B, 2021, 35(3): 2150070. doi:10.1142/s0217984921500706
doi: 10.1142/s0217984921500706
19 AN J, YAN D, GUO S, et al. An improved method for direct incident solar radiation calculation from hourly solar insolation data in building energy simulation[J]. Energy and Buildings, 2020, 227: 110425. doi:10.1016/j.enbuild.2020.110425
doi: 10.1016/j.enbuild.2020.110425
20 ZHANG M, AN Q, LONG Z, et al. Optimization of airflow organization for a small-scale date center based on the cold aisle closure[J]. Procedia Engineering, 2017, 205: 1893-1900. doi:10.1016/j.proeng.2017. 10.279
doi: 10.1016/j.proeng.2017. 10.279
21 LI G, LI Z, FENG G H, et al. Numerical analysis of influence on indoor air distribution by the positions of air inlet and air outlet[M]//XIE L. Modeling and Computation in Engineering II. London: CRC Press, 2013: 297-303. doi:10.1201/b14896-47
doi: 10.1201/b14896-47
22 王振飞.某水电站地下主厂房气流组织优化设计研究[J].建筑热能通风空调,2019,38(4):80-84. doi:10.3969/j.issn.1003-0344.2019.04.021
WANG Zhen-fei. Optimization design of air distribution for a hydropower station[J]. Building Energy & Environment, 2019, 38(4): 80-84.
doi: 10.3969/j.issn.1003-0344.2019.04.021
[1] 邓丽, 王国华, 余隋怀. 遗传-蚁群算法求解司钻控制室操纵器布局优化[J]. 工程设计学报, 2016, 23(2): 143-151.
[2] 王 毅,姚卫星. 桁架结构布局优化的并行子空间方法[J]. 工程设计学报, 2015, 22(3): 256-261.