设计理论与方法 |
|
|
|
|
基于互信息与支持向量回归的盾构掘进载荷预测方法研究 |
周皓( ),刘尚林,杨凯弘,周思阳,张茜( ) |
天津大学 机械工程学院,天津 300350 |
|
Research on prediction method of driving load of shield machine based on mutual information and support vector regression |
Hao ZHOU( ),Shang-lin LIU,Kai-hong YANG,Si-yang ZHOU,Qian ZHANG( ) |
School of Mechanical Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
周皓,刘尚林,杨凯弘,周思阳,张茜. 基于互信息与支持向量回归的盾构掘进载荷预测方法研究[J]. 工程设计学报, 2022, 29(3): 286-292.
Hao ZHOU,Shang-lin LIU,Kai-hong YANG,Si-yang ZHOU,Qian ZHANG. Research on prediction method of driving load of shield machine based on mutual information and support vector regression[J]. Chinese Journal of Engineering Design, 2022, 29(3): 286-292.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.033
或
https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/286
|
1 |
ARMAGHANI D J, KOOPIALIPOOR M, MARTO A, et al. Application of several optimization techniques for estimating TBM advance rate in granitic rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 779-789. doi:10.1016/j.jrmge.2019.01.002
doi: 10.1016/j.jrmge.2019.01.002
|
2 |
BILGIN N, ALGAN M. The performance of a TBM in a squeezing ground at Uluabat, Turkey[J]. Tunnelling and Underground Space Technology, 2012, 32: 58-65. doi:10.1016/j.tust.2012.05.004
doi: 10.1016/j.tust.2012.05.004
|
3 |
夏毅敏,林赉贶,罗德志,等.复合式土压平衡盾构盘形滚刀布置规律[J].中南大学学报(自然科学版),2013(9):3652-3657. XIA Yi-min, LIN Lai-kuang, LUO De-zhi, et al. Disc cutter layout law for composite EPB shield[J]. Journal of Central South University (Science and Technology), 2013(9): 3652-3657.
|
4 |
孙伟,马宏辉,丁鑫,等.TBM刀盘驱动系统分层次建模及动力学特性研究[J].机械工程学报,2018,54(1):44-55. doi:10.3901/jme.2018.01.044 SUN Wei, MA Hong-hui, DING Xin, et al. Hierarchical modeling and dynamic analysis of cutterhead driving system in TBM[J]. Journal of Mechanical Engineering, 2018, 54(1): 44-55.
doi: 10.3901/jme.2018.01.044
|
5 |
ENTACHER M, WINTER G, GALLER R. Cutter force measurement on tunnel boring machines: Implementation at Koralm tunnel[J]. Tunnelling and Underground Space Technology, 2013, 38: 487-496. doi:10.1016/j.tust. 2013. 08.010
doi: 10.1016/j.tust. 2013. 08.010
|
6 |
LIU B, GUO Q, LIU Z, et al. Comprehensive ahead prospecting for hard rock TBM tunneling in complex limestone geology: A case study in Jilin, China[J]. Tunnelling and Underground Space Technology, 2019, 93: 103045. doi:10.1016/j.tust.2019.103045
doi: 10.1016/j.tust.2019.103045
|
7 |
ZHANG Q, QU C, KANG Y, et al. Identification and optimization of energy consumption by shield tunnel machines using a combined mechanical and regression analysis[J]. Tunnelling and Underground Space Technology, 2012, 28: 350-354. doi:10.1016/j.tust. 2011.12.003
doi: 10.1016/j.tust. 2011.12.003
|
8 |
郑峥.盾构掘进载荷的力学分析与反演识别[D].天津:天津大学,2013:31-37. doi:10.3901/jme.2014.21.031 ZHENG Zheng. Mechanical analysis and inverse identification on load of shield tunneling machine[D]. Tianjin: Tianjin University, 2013: 31-37.
doi: 10.3901/jme.2014.21.031
|
9 |
褚东升.长沙地铁下穿湘江土压平衡盾构隧道掘进参数研究[D].长沙:中南大学,2012:85-91. CHU Dong-sheng. Study of EPB shield tunnelling parameters of Changsha metro passing beneath Xiangjiang River[D]. Changsha: Central South University, 2012: 85-91..
|
10 |
SONG X, LIU J, GUO W. A cutter head torque forecast model based on multivariate nonlinear regression for EPB shield tunneling[C]//2010 International Conference on Artificial Intelligence and Computational Intelligence, New York: IEEE, 2010: 104-108. doi:10.1109/aici. 2010.261
doi: 10.1109/aici. 2010.261
|
11 |
张志奇,李彤,韩爱民,等.复杂地层盾构掘进速率和刀盘扭矩预测模型及其地层适应性研究[J].隧道建设,2016,36(12):1449-1455. doi:10.3973/j.issn.1672-741X.2016.12.007 ZHANG Zhi-qi, LI Tong, HAN Ai-min, et al. Prediction models of advancing speed and cutterhead torque of shield tunneling in complex strata and its adaptability to strata[J]. Tunnel Construction, 2016, 36(12): 1449-1455.
doi: 10.3973/j.issn.1672-741X.2016.12.007
|
12 |
胡祥涛,张红旗,李自成,等.基于部分可观测Markov决策过程理论的盾构推进载荷规划[J].机械工程学报,2014,50(21): 84-91. doi:10.3901/jme.2014.21.084 HU Xiang-tao, ZHANG Hong-qi, LI Zi-cheng, et al. POMDP-based planning model of driving force during shield tunneling[J]. Journal of Mechanical Engineering, 2014, 50(21): 84-91.
doi: 10.3901/jme.2014.21.084
|
13 |
AVUNDUK E, COPUR H. Empirical modeling for predicting excavation performance of EPB TBM based on soil properties[J]. Tunnelling and Underground Space Technology, 2018, 71: 340-353. doi:10.1016/j.tust. 2017.09.016
doi: 10.1016/j.tust. 2017.09.016
|
14 |
SUN W, SHI M, ZHANG C, et al. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23-34. doi:10.1016/j.autcon. 2018.03.030
doi: 10.1016/j.autcon. 2018.03.030
|
15 |
GAO X, SHI M, SONG X, et al. Recurrent neural networks for real-time prediction of TBM operating parameters[J]. Automation in Construction, 2019, 98: 225-235. doi:10.1016/j.autcon.2018.11.013
doi: 10.1016/j.autcon.2018.11.013
|
16 |
LI S, LIU B, XU X, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology, 2017, 63: 69-94. doi:10.1016/j.tust.2016.12.011
doi: 10.1016/j.tust.2016.12.011
|
17 |
YAMAMOTO T, SHIRASAGI S, YAMAMOTO S, et al. Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 213-221. doi:10.1016/s0886-7798(03)00030-0
doi: 10.1016/s0886-7798(03)00030-0
|
18 |
ZHOU C, DING L Y, SKIBNIEWSKI M J, et al. Data based complex network modeling and analysis of shield tunneling performance in metro construction[J]. Advanced Engineering Informatics, 2018, 38: 168-186. doi:10.1016/j.aei.2018.06.011
doi: 10.1016/j.aei.2018.06.011
|
19 |
AMIRI F, YOUSEFI M R, LUCAS C, et al. Mutual information-based feature selection for intrusion detection systems[J]. Journal of Network and Computer Applications, 2011, 34(4): 1184-1199. doi:10.1016/j.jnca.2011.01.002
doi: 10.1016/j.jnca.2011.01.002
|
20 |
COVER T M, THOMAS J A. Elements of information theory[M]. New Jersey: Wiley-Interscience, 2006: 5-12.
|
21 |
VERGARA J R, ESTÉVEZ P A. A review of feature selection methods based on mutual information[J]. Neural Computing and Applications, 2014, 24(1): 175-186. doi:10.1007/s00521-013-1368-0
doi: 10.1007/s00521-013-1368-0
|
22 |
张长水.机器学习面临的挑战[J].中国科学(信息科学),2013,43(12):1612-1623. doi:10.1360/n112013-00074 ZHANG Chang-shui. Challenges in machine learning [J]. Scientia Sinica (Informationis), 2013, 43(12): 1612-1623.
doi: 10.1360/n112013-00074
|
23 |
赖永标.支持向量机在地下工程中的应用研究[D].青岛:山东科技大学,2004:22-24. doi:10.7666/d.Y671299 LAI Yong-biao. Application and study of support vector machine in the underground engineering[D]. Qingdao: Shandong University of Science and Technology, 2004: 22-24.
doi: 10.7666/d.Y671299
|
24 |
王健.基于机器学习的TBM掘进性能预测与岩体参数表征方法研究[D].济南:山东大学,2017:20-23. WANG Jian. Research on TBM performance prediction and rock mass parameters characterization method based on machine learning [D]. Jinan: Shandong University, 2017: 20-23.
|
25 |
YANG J P, CHEN W Z, LI M, et al. Structural health monitoring and analysis of an underwater TBM tunnel[J]. Tunnelling and Underground Space Technology, 2018, 82: 235-247. doi:10.1016/j.tust. 2018.08.053
doi: 10.1016/j.tust. 2018.08.053
|
26 |
TANG Z, LIU X, XU Q, et al. Stability evaluation of deep-buried TBM construction tunnel based on microseismic monitoring technology[J]. Tunnelling and Underground Space Technology, 2018, 81: 512-524. doi:10.1016/j.tust.2018.08.028
doi: 10.1016/j.tust.2018.08.028
|
27 |
BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifier[C]//Proceedings of the fifth Annual Workshop on Computational Learning Theory. New York: Association for Computing Machinery, 1992: 144-152. doi:10.1145/130385.130401
doi: 10.1145/130385.130401
|
28 |
周志华.机器学习[M].北京:清华大学出版社,2016:121-136. doi:10.21436/inbom.12382432 ZHOU Zhi-hua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 121-136.
doi: 10.21436/inbom.12382432
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|