Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 286-292    DOI: 10.3785/j.issn.1006-754X.2022.00.033
设计理论与方法     
基于互信息与支持向量回归的盾构掘进载荷预测方法研究
周皓(),刘尚林,杨凯弘,周思阳,张茜()
天津大学 机械工程学院,天津 300350
Research on prediction method of driving load of shield machine based on mutual information and support vector regression
Hao ZHOU(),Shang-lin LIU,Kai-hong YANG,Si-yang ZHOU,Qian ZHANG()
School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
 全文: PDF(1446 KB)   HTML
摘要:

掘进载荷是盾构施工中的重要控制量,直接关系着施工安全与效率。通过对掘进载荷影响因素的分析,建立了一种基于工程实测数据分析的掘进载荷特征选择及预测方法。首先,对工程实测数据进行极值归一化预处理,以降低不同参数间量纲和量级的差异产生的支配性影响;其次,通过参数分析和基于互信息的特征选择选取主要的影响参数作为输入;最后,通过支持向量回归(support vector regression,SVR)建立掘进载荷的预测模型,并结合天津地铁9号线盾构施工工程案例检验其预测表现。结果表明,所建立的掘进载荷预测方法能够在工程实测数据包含的众多影响参数中筛选出少量关键特征,实现对掘进载荷的合理预测。研究结果可以为盾构掘进参数的调控提供参考,也为具有众多参数的工程实测数据的分析提供一种思路。

关键词: 盾构工程实测数据掘进载荷特征选择支持向量回归    
Abstract:

driving load is an important control parameter in shield construction, which is directly related to construction safety and efficiency. Through the analysis of influencing factors of driving load, a feature selection and prediction method of driving load based on the analysis of engineering measured data was established. Firstly, the engineering measured data were extreme valuenormalized and preprocessed to reduce the dominant influence caused by dimensional and magnitude differences between different parameters; secondly, through parameter analysis and feature selection based on mutual information, the main influence parameters were selected as input; finally, the prediction model of driving load was established by support vector regression (SVR), and its prediction performance was tested by the actual shield construction engineering case of Tianjin Metro Line 9. The results showed that the established driving load prediction method could select a small number of key features from many influencing parameters contained in the engineering measured data, and realize the reasonable prediction of driving load. The research results can provide a reference for the regulation of shield tunneling parameters, and also provide an idea for the analysis of engineering measured data with many parameters.

Key words: shield machine    engineering measured data    driving load    feature selection    support vector regression
收稿日期: 2019-12-19 出版日期: 2022-07-05
CLC:  TH 11  
基金资助: 国家重点研发计划资助项目(2018YFB1702500);国家自然科学基金资助项目(12022205)
通讯作者: 张茜     E-mail: 1239939145@qq.com;zhangqian@tju.edu.cn
作者简介: 周 皓(1997—),男,湖北黄冈人,硕士生,从事工程数据分析研究,E-mail:1239939145@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周皓
刘尚林
杨凯弘
周思阳
张茜

引用本文:

周皓,刘尚林,杨凯弘,周思阳,张茜. 基于互信息与支持向量回归的盾构掘进载荷预测方法研究[J]. 工程设计学报, 2022, 29(3): 286-292.

Hao ZHOU,Shang-lin LIU,Kai-hong YANG,Si-yang ZHOU,Qian ZHANG. Research on prediction method of driving load of shield machine based on mutual information and support vector regression[J]. Chinese Journal of Engineering Design, 2022, 29(3): 286-292.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.033        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/286

图1  SVR算法
图2  掘进载荷预测流程
参数最大值最小值均值标准差
掘进速度/(mm/min)55.6816.8435.2310.04
掘进总推力/kN24 878.5010 944.4116 063.762 920.61
刀盘扭矩/kNm1735.17810.461281.44152.04
刀盘转速/(r/min)1.100.400.950.14
表1  盾构施工中的部分主要参数
图3  R2随特征数的变化曲线
序号掘进总推力互信息值刀盘扭矩互信息值
1注浆上限0.570 52号高压变压器二次电流0.640 6
2掘进速度0.564 51号高压变压器二次电流0.355 6
3垂直偏差(铰接)0.557 5注浆累计平均值0.272 5
4垂直偏差(前端)0.557 5注浆上限0.252 6
5目标水准偏差0.557 4注浆下限0.238 9
6垂直偏差(后端)0.557 2掘进速度0.206 5
7测边差0.556 8土压平均值0.197 4
8Robotec方位偏差0.556 8注浆累计加权平均值0.195 7
9水平偏差(前端)0.556 8土压上限0.185 7
10水平偏差(铰接)0.556 8加泥上限0.173 0
11水平偏差(后端)0.556 8俯仰角0.153 9
12方位位移量0.556 8目标俯仰角偏差0.152 7
13开始时累计水准0.551 1俯仰角差0.152 5
14注浆下限0.542 0右千斤顶速度0.135 6
15俯仰角差0.523 4土压下限0.135 6
表2  掘进载荷与各特征参数之间的互信息分析结果
图4  掘进总推力实测值与预测值的对比
图5  刀盘扭矩实测值与预测值的对比
1 ARMAGHANI D J, KOOPIALIPOOR M, MARTO A, et al. Application of several optimization techniques for estimating TBM advance rate in granitic rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 779-789. doi:10.1016/j.jrmge.2019.01.002
doi: 10.1016/j.jrmge.2019.01.002
2 BILGIN N, ALGAN M. The performance of a TBM in a squeezing ground at Uluabat, Turkey[J]. Tunnelling and Underground Space Technology, 2012, 32: 58-65. doi:10.1016/j.tust.2012.05.004
doi: 10.1016/j.tust.2012.05.004
3 夏毅敏,林赉贶,罗德志,等.复合式土压平衡盾构盘形滚刀布置规律[J].中南大学学报(自然科学版),2013(9):3652-3657.
XIA Yi-min, LIN Lai-kuang, LUO De-zhi, et al. Disc cutter layout law for composite EPB shield[J]. Journal of Central South University (Science and Technology), 2013(9): 3652-3657.
4 孙伟,马宏辉,丁鑫,等.TBM刀盘驱动系统分层次建模及动力学特性研究[J].机械工程学报,2018,54(1):44-55. doi:10.3901/jme.2018.01.044
SUN Wei, MA Hong-hui, DING Xin, et al. Hierarchical modeling and dynamic analysis of cutterhead driving system in TBM[J]. Journal of Mechanical Engineering, 2018, 54(1): 44-55.
doi: 10.3901/jme.2018.01.044
5 ENTACHER M, WINTER G, GALLER R. Cutter force measurement on tunnel boring machines: Implementation at Koralm tunnel[J]. Tunnelling and Underground Space Technology, 2013, 38: 487-496. doi:10.1016/j.tust. 2013. 08.010
doi: 10.1016/j.tust. 2013. 08.010
6 LIU B, GUO Q, LIU Z, et al. Comprehensive ahead prospecting for hard rock TBM tunneling in complex limestone geology: A case study in Jilin, China[J]. Tunnelling and Underground Space Technology, 2019, 93: 103045. doi:10.1016/j.tust.2019.103045
doi: 10.1016/j.tust.2019.103045
7 ZHANG Q, QU C, KANG Y, et al. Identification and optimization of energy consumption by shield tunnel machines using a combined mechanical and regression analysis[J]. Tunnelling and Underground Space Technology, 2012, 28: 350-354. doi:10.1016/j.tust. 2011.12.003
doi: 10.1016/j.tust. 2011.12.003
8 郑峥.盾构掘进载荷的力学分析与反演识别[D].天津:天津大学,2013:31-37. doi:10.3901/jme.2014.21.031
ZHENG Zheng. Mechanical analysis and inverse identification on load of shield tunneling machine[D]. Tianjin: Tianjin University, 2013: 31-37.
doi: 10.3901/jme.2014.21.031
9 褚东升.长沙地铁下穿湘江土压平衡盾构隧道掘进参数研究[D].长沙:中南大学,2012:85-91.
CHU Dong-sheng. Study of EPB shield tunnelling parameters of Changsha metro passing beneath Xiangjiang River[D]. Changsha: Central South University, 2012: 85-91..
10 SONG X, LIU J, GUO W. A cutter head torque forecast model based on multivariate nonlinear regression for EPB shield tunneling[C]//2010 International Conference on Artificial Intelligence and Computational Intelligence, New York: IEEE, 2010: 104-108. doi:10.1109/aici. 2010.261
doi: 10.1109/aici. 2010.261
11 张志奇,李彤,韩爱民,等.复杂地层盾构掘进速率和刀盘扭矩预测模型及其地层适应性研究[J].隧道建设,2016,36(12):1449-1455. doi:10.3973/j.issn.1672-741X.2016.12.007
ZHANG Zhi-qi, LI Tong, HAN Ai-min, et al. Prediction models of advancing speed and cutterhead torque of shield tunneling in complex strata and its adaptability to strata[J]. Tunnel Construction, 2016, 36(12): 1449-1455.
doi: 10.3973/j.issn.1672-741X.2016.12.007
12 胡祥涛,张红旗,李自成,等.基于部分可观测Markov决策过程理论的盾构推进载荷规划[J].机械工程学报,2014,50(21): 84-91. doi:10.3901/jme.2014.21.084
HU Xiang-tao, ZHANG Hong-qi, LI Zi-cheng, et al. POMDP-based planning model of driving force during shield tunneling[J]. Journal of Mechanical Engineering, 2014, 50(21): 84-91.
doi: 10.3901/jme.2014.21.084
13 AVUNDUK E, COPUR H. Empirical modeling for predicting excavation performance of EPB TBM based on soil properties[J]. Tunnelling and Underground Space Technology, 2018, 71: 340-353. doi:10.1016/j.tust. 2017.09.016
doi: 10.1016/j.tust. 2017.09.016
14 SUN W, SHI M, ZHANG C, et al. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction, 2018, 92: 23-34. doi:10.1016/j.autcon. 2018.03.030
doi: 10.1016/j.autcon. 2018.03.030
15 GAO X, SHI M, SONG X, et al. Recurrent neural networks for real-time prediction of TBM operating parameters[J]. Automation in Construction, 2019, 98: 225-235. doi:10.1016/j.autcon.2018.11.013
doi: 10.1016/j.autcon.2018.11.013
16 LI S, LIU B, XU X, et al. An overview of ahead geological prospecting in tunneling[J]. Tunnelling and Underground Space Technology, 2017, 63: 69-94. doi:10.1016/j.tust.2016.12.011
doi: 10.1016/j.tust.2016.12.011
17 YAMAMOTO T, SHIRASAGI S, YAMAMOTO S, et al. Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 213-221. doi:10.1016/s0886-7798(03)00030-0
doi: 10.1016/s0886-7798(03)00030-0
18 ZHOU C, DING L Y, SKIBNIEWSKI M J, et al. Data based complex network modeling and analysis of shield tunneling performance in metro construction[J]. Advanced Engineering Informatics, 2018, 38: 168-186. doi:10.1016/j.aei.2018.06.011
doi: 10.1016/j.aei.2018.06.011
19 AMIRI F, YOUSEFI M R, LUCAS C, et al. Mutual information-based feature selection for intrusion detection systems[J]. Journal of Network and Computer Applications, 2011, 34(4): 1184-1199. doi:10.1016/j.jnca.2011.01.002
doi: 10.1016/j.jnca.2011.01.002
20 COVER T M, THOMAS J A. Elements of information theory[M]. New Jersey: Wiley-Interscience, 2006: 5-12.
21 VERGARA J R, ESTÉVEZ P A. A review of feature selection methods based on mutual information[J]. Neural Computing and Applications, 2014, 24(1): 175-186. doi:10.1007/s00521-013-1368-0
doi: 10.1007/s00521-013-1368-0
22 张长水.机器学习面临的挑战[J].中国科学(信息科学),2013,43(12):1612-1623. doi:10.1360/n112013-00074
ZHANG Chang-shui. Challenges in machine learning [J]. Scientia Sinica (Informationis), 2013, 43(12): 1612-1623.
doi: 10.1360/n112013-00074
23 赖永标.支持向量机在地下工程中的应用研究[D].青岛:山东科技大学,2004:22-24. doi:10.7666/d.Y671299
LAI Yong-biao. Application and study of support vector machine in the underground engineering[D]. Qingdao: Shandong University of Science and Technology, 2004: 22-24.
doi: 10.7666/d.Y671299
24 王健.基于机器学习的TBM掘进性能预测与岩体参数表征方法研究[D].济南:山东大学,2017:20-23.
WANG Jian. Research on TBM performance prediction and rock mass parameters characterization method based on machine learning [D]. Jinan: Shandong University, 2017: 20-23.
25 YANG J P, CHEN W Z, LI M, et al. Structural health monitoring and analysis of an underwater TBM tunnel[J]. Tunnelling and Underground Space Technology, 2018, 82: 235-247. doi:10.1016/j.tust. 2018.08.053
doi: 10.1016/j.tust. 2018.08.053
26 TANG Z, LIU X, XU Q, et al. Stability evaluation of deep-buried TBM construction tunnel based on microseismic monitoring technology[J]. Tunnelling and Underground Space Technology, 2018, 81: 512-524. doi:10.1016/j.tust.2018.08.028
doi: 10.1016/j.tust.2018.08.028
27 BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifier[C]//Proceedings of the fifth Annual Workshop on Computational Learning Theory. New York: Association for Computing Machinery, 1992: 144-152. doi:10.1145/130385.130401
doi: 10.1145/130385.130401
28 周志华.机器学习[M].北京:清华大学出版社,2016:121-136. doi:10.21436/inbom.12382432
ZHOU Zhi-hua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 121-136.
doi: 10.21436/inbom.12382432
[1] 王碧海, 张健, 陈永亮, 彭庆金, 顾佩华. 盾构螺旋输送机适应性设计智能决策[J]. 工程设计学报, 2022, 29(1): 1-9.
[2] 魏云篷, 陈永亮, 索树灿. 基于模块度和均衡度的复杂产品架构评价方法[J]. 工程设计学报, 2021, 28(5): 527-538.
[3] 曾文宇, 管会生, 宋颖鹏, 熊艳梅. 煤矿斜井双模式盾构刀盘的受力特性研究[J]. 工程设计学报, 2017, 24(1): 77-82.
[4] 陆凤仪,王 爽,徐格宁,戚其松. 构建起重机载荷谱v-SVRM预测模型的改进方法[J]. 工程设计学报, 2015, 22(5): 412-419.
[5] 周鸿彬,龚国芳,王林涛,吴伟强. ¢1.2 m缩尺实验盾构机械结构与液压系统设计[J]. 工程设计学报, 2014, 21(2): 185-190.
[6] 杨旭, 龚国芳, 杨华勇, 陈馈, 王林涛. 盾构管片拼装试验台监控系统设计[J]. 工程设计学报, 2013, 20(6): 534-538.
[7] 刘杰, 卿启湘, 文桂林. EPB盾构机推进系统振动响应分析[J]. 工程设计学报, 2013, 20(6): 489-494.
[8] 刘国斌, 龚国芳, 朱北斗, 施 虎. 基于BP神经网络的盾构推进速度自适应PID控制[J]. 工程设计学报, 2010, 17(6): 454-458.
[9] 刘峰, 龚国芳, 石元奇, 朱北斗. 基于自适应控制技术的盾构掘进监控系统[J]. 工程设计学报, 2010, 17(4): 302-306.
[10] 周如林, 龚国芳, 施虎, 朱北斗, 刘峰. 盾构推进系统液压缸的同步协调控制[J]. 工程设计学报, 2009, 16(6): 457-461.