Please wait a minute...
工程设计学报  2021, Vol. 28 Issue (6): 737-745    DOI: 10.3785/j.issn.1006-754X.2021.00.087
建模、仿真、分析与决策     
双弹簧电液激振缸振幅补偿性能的研究
赵凯平1, 何涛1,2,3, 王传礼1,2,3, 史瑞1
1.安徽理工大学 机械工程学院, 安徽 淮南 232001
2.流体动力与机电系统国家重点实验室, 浙江 杭州 310027
3.矿山智能装备与技术安徽省重点实验室, 安徽 淮南 232001
Research on amplitude compensation performance of double spring electro-hydraulic vibration cylinder
ZHAO Kai-ping1, HE Tao1,2,3, WANG Chuan-li1,2,3, SHI Rui1
1.School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China
2.State Key Laboratory of Fluid Power and Mechatronic Systems, Hangzhou 310027, China
3.Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Huainan 232001, China
 全文: PDF(3412 KB)   HTML
摘要: 传统的电液激振缸随着激振频率的提高,振动幅值急剧衰减,振幅补偿性能变差。为了解决这一问题,设计了一种双弹簧电液激振缸结构。分析了双弹簧电液激振缸的工作原理,建立了其数学模型和AMESim仿真模型,研究了激振频率、补偿弹簧刚度对其活塞杆位移的影响。结果表明:当激振频率为28 Hz、补偿弹簧刚度为31 N/mm时,激振缸活塞杆的位移增大6.24 mm,相比同一条件下的传统电液激振缸增大了15倍多;在双弹簧电液激振缸的工作过程中,其活塞杆位移振幅存在振荡区和稳定区,稳定区内的振幅大小直接决定了振幅补偿效果的优劣;在补偿弹簧刚度一定的情况下,活塞杆位移振幅不与激振频率呈简单的正相关或负相关关系,而在某一激振频率下谐振现象最明显,能使振幅补偿效果达到最优;激振频率不同,则补偿弹簧最优刚度不同,随着激振频率的提高,补偿弹簧刚度应相应增大。相比于传统的电液激振缸,双弹簧电液激振缸的振动幅值有较大提升,在工程应用中能取得更好的振幅补偿效果。
Abstract: With the increase of excitation frequency, the vibration amplitude of traditional electro-hydraulic vibration cylinder decreases sharply, and the amplitude compensation performance becomes worse. A double spring electro-hydraulic vibration cylinder structure was designed to solve this problem. The working principle of double spring electro-hydraulic vibration cylinder was studied, its mathematical model and AMESim simulation model were established, and the effects of excitation frequency and compensation spring stiffness on displacement of its piston rod were analyzed. The results showed that when the excitation frequency was 28 Hz and the compensation spring stiffness was 31 N/mm, the displacement of piston rod of the vibration cylinder could be increased by 6.24 mm, which was more than 15 times higher than that of the traditional electro-hydraulic vibration cylinder under the same conditions; in the working process of the double spring electro-hydraulic vibration cylinder, the displacement amplitude of piston rod had an oscillation region and a stable region. The amplitude in the stable region directly determined the quality of the amplitude compensation effect; when the compensation spring stiffness was certain, the displacement amplitude of piston rod did not have a simple positive or negative correlation with the excitation frequency, and the resonance phenomenon was the most obvious at a certain excitation frequency, which could optimize the amplitude compensation effect; there were different compensation spring optimal stiffness at different excitation frequencies, with the increase of excitation frequency, the compensation spring stiffness should increase accordingly. Compared with the traditional electro-hydraulic vibration cylinder, the vibration amplitude of the double spring electro-hydraulic vibration cylinder is greatly improved and can achieve better amplitude compensation effect in engineering applications.
收稿日期: 2020-12-21 出版日期: 2021-12-28
CLC:  TH 137  
基金资助: 国家自然科学基金资助项目(51675003);流体动力与机电系统国家重点实验室开放基金资助项目(GZKF-201715);安徽省自然科学基金资助项目(2008085QE216);安徽省高校自然科学研究项目(KJ2018A0078);安徽省学术和技术带头人科研活动经费资助项目(2019D215)
通讯作者: 王传礼(1964—),男,安徽淮南人,教授,博士生导师,博士,从事流体传动与控制技术等研究,E-mail:chlwang@aust.edu.cn,https://orcid.org/0000-0002-7621-5185     E-mail: chlwang@aust.edu.cn
作者简介: 赵凯平(1997—),男,安徽安庆人,硕士生,从事流体传动与控制技术研究,E-mail:zkp52262@163.com,https://orcid.org/0000-0002-9827-969X;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵凯平, 何涛, 王传礼, 史瑞. 双弹簧电液激振缸振幅补偿性能的研究[J]. 工程设计学报, 2021, 28(6): 737-745.

ZHAO Kai-ping, HE Tao, WANG Chuan-li, SHI Rui. Research on amplitude compensation performance of double spring electro-hydraulic vibration cylinder. Chinese Journal of Engineering Design, 2021, 28(6): 737-745.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2021.00.087        https://www.zjujournals.com/gcsjxb/CN/Y2021/V28/I6/737

[1] 宁志强,卫立新,权龙,赵美卿,高有山. 变排量非对称轴向柱塞泵抗扰控制及并行整定方法[J]. 工程设计学报, 2022, 29(4): 401-409.
[2] 李科军,邓旻涯,黄文静,张宇,曾家旺,陈淼林. 混凝土湿喷机摆动系统工作特性研究[J]. 工程设计学报, 2022, 29(4): 519-526.
[3] 李宝志, 倪洪启, 林思雨, 孟宪春. 基于图像识别的波纹补偿器轴向尺寸检测方法[J]. 工程设计学报, 2022, 29(1): 10-19.
[4] 张泽, 陈勇, 李光鑫, 雷勇敢, 阮鸥, 王再宙. 电动汽车变速器电液控制系统总成设计及结构优化[J]. 工程设计学报, 2021, 28(3): 335-343.
[5] 王志力, 朱廷忠, 陈智勇, 席波, 贾小平. 贯流式水轮机调速器的机械结构和液压系统设计[J]. 工程设计学报, 2020, 27(6): 753-764.
[6] 马长李, 刘聪, 马奔. 基于干扰观测器的波浪升沉模拟及自适应补偿策略研究[J]. 工程设计学报, 2019, 26(6): 728-735.
[7] 方晓瑜, 赵宏强, 文国臣. 基于AMESim恒功率变量泵的仿真研究[J]. 工程设计学报, 2011, 18(6): 437-443.
[8] 刘峰, 龚国芳, 石元奇, 朱北斗. 基于自适应控制技术的盾构掘进监控系统[J]. 工程设计学报, 2010, 17(4): 302-306.
[9] 周如林, 龚国芳, 施虎, 朱北斗, 刘峰. 盾构推进系统液压缸的同步协调控制[J]. 工程设计学报, 2009, 16(6): 457-461.