Please wait a minute...
工程设计学报  2020, Vol. 27 Issue (2): 232-238    DOI: 10.3785/j.issn.1006-754X.2020.00.030
优化设计     
UUV耐压结构多目标优化设计
高启升1,2, 朱兴华1,2, 于延凯1,2, 郑荣1,2
1.中国科学院 沈阳自动化研究所, 辽宁 沈阳 110016;
2.中国科学院 机器人与智能制造创新研究院, 辽宁 沈阳 110016
Multi-objective optimal design of UUV pressure structure
GAO Qi-sheng1,2, ZHU Xing-hua1,2, YU Yan-kai1,2, ZHENG Rong1,2
1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2.Institute of Robotics and Intelligent Manufacturing Innovation, Chinese Academy of Sciences, Shenyang 110016, China
 全文: PDF(584 KB)   HTML
摘要: UUV(unmanned underwater vehicle,无人水下航行器)在海洋民用与军事领域具有广阔的应用前景。UUV耐压结构作为影响UUV负载能力及保障UUV航行任务安全高效执行的重要部件,其优化设计有重要意义。为了最大程度地实现减重目标,有效平衡耐压结构质量、结构强度和稳定性之间的矛盾,进而提升UUV综合性能,提出一种基于组合加权响应面法的多目标优化方法。通过试验设计得到初始采样点,利用有限元工具计算响应值并构建代理模型;然后,以折衷规划法对子目标进行归一化处理,采用组合加权法设定子目标权重系数,以进行耐压结构的多目标优化设计。以某型UUV为例,利用所提方法对其梯形肋骨耐压结构进行多目标优化设计,优化后耐压结构质量减轻了6.6%,肋骨应力下降了6.7%,同时满足稳定性要求。在此基础上,分别以质量为优化目标和以质量、结构强度和稳定性为综合优化目标,对不同肋骨形式耐压结构进行优化设计。结果表明:梯形肋骨耐压结构的综合优化效果最佳。该研究方法适用于UUV耐压结构的多目标优化,研究结果可为UUV耐压结构优化设计提供理论指导,具有实际工程意义。
关键词: 耐压结构组合加权法响应面法多目标优化    
Abstract: UUV (unmanned underwater vehicle) has a wide application prospects in the marine civil and military fields. As an important part, UUV pressure structure affects the load capacity of UUV and can guarantee the UUV execute navigation tasks safely and efficiently, so it is of great significance to optimize the pressure structure. In order to reduce weight at the greatest extent, and balance the contradictory among the weight, structural strength and stability of pressure structure, a multi-objective optimization method based on the combined weighted response surface method was proposed to improve the comprehensive capacities of UUV. The initial sampling points were obtained through the design of experiment, and the response values were calculated and the agent model was constructed by using the finite element tool.Then, the sub-target was normalized by the compromise programming method, and the weight coefficients of sub-targets were set up by combined weighted method to achieve the multi-objective optimal design of pressure structure. Taking a certain type of UUV as an example, the multi-objective optimal design for its pressure structure with trapezoid rib was carried out based on the proposed method.The weight of the optimized pressure structure was reduced by 6.6%, the rib stress was reduced by 6.7%, and the stability requirement was met at the same time. On this basis, the pressure structures with different rib forms were optimized with weight as the optimization goal and with weight, structural strength and stability as the comprehensive optimization goals, respectively. The results showed that the comprehensive optimization effect of the pressure structure with trapezoid rib was the best. This method is suitable for the multi-objective optimization of UUV pressure structure, and the research results can provide a theoretical guidance for the optimal design of UUV pressure structure, which has the practical engineering significance.
Key words: pressure structure    combined weighted method    response surface method    multi-objective optimization
收稿日期: 2019-06-04 出版日期: 2020-04-28
:  TH 122  
基金资助: 中国科学院青年创新促进会项目(2016187);中国科学院科技创新重点部署项目(KGFZD135-16-007-2)
作者简介: 高启升(1986—),男,辽宁沈阳人,副研究员,硕士,从事水下机器人结构设计与优化研究,E-mail:gaoqisheng@sia.cn, https://orcid.org/0000-0003-0515-8918
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高启升
朱兴华
于延凯
郑荣

引用本文:

高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.

GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.030        https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/232

[1] 肖玉杰,邱志明,石章松. UUV国内外研究现状及若干关键问题综述[J]. 电光与控制,2014,21(2):46-49,89. doi: 10.3969/j.issn.1671-637X.2014.02.011 XIAOYu-jie, QIUZhi-ming, SHIZhang-song. On current research status of UUV and its critical technologies[J]. Electronics Optics & Control, 2014, 21 (2): 46-49, 89.
[2] 王蓬. 军用UUV的发展与应用前景展望[J]. 水下无人系统学报,2009,17(1):5-9. doi: 10.3969/j.issn.1673-1948.2009.01.002 WANGPeng. Current development status and future application of navy UUVs[J]. Journal of Unmanned Undersea Systems, 2009, 17(1): 5-9.
[3] 钱东,赵江,杨芸. 军用UUV发展方向与趋势(上):美军用无人系统发展规划分析解读[J]. 水下无人系统学报,2017,25(1):1-30. doi: 10.11993/j.issn.2096-3920.2017.01.001 QIANDong, ZHAOJiang, YANGYun. Development trend of military UUV(1): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 1-30.
[4] 熊传志,武雷. 大直径UUV耐压壳体的结构设计[J]. 水雷战与舰船防,2015,23(2):29-34. XIONGChuan-zhi, WULei. Structural design of large diameter UUV pressure hull[J]. Mine Warfare & Ship-Defence, 2015, 23(2): 29-34.
[5] 吕春雷,王晓天,姚文,等. 多种型式肋骨加强的耐压圆柱壳体结构稳定性研究[J].船舶力学,2006,10(5):113-118. doi: 10.3969/j.issn.1007-7294.2006.05.016 Chun-leiLü, WANGXiao-tian, YAOWen, et al. Study of buckling of cylindrical shell ring-stiffened by manifold stiffeners under hydrostatic pressure[J]. Journal of Ship Mechanics, 2006, 10(5): 113-118.
[6] 刘培婧,刘均,陈杰,等.具有特殊肋骨型式的耐压壳体强度与极限承载能力分析[J]. 中国舰船研究,2014,9(2):30-36. doi: 10.3969/j.issn.1673-3185.2014.02.006 LIUPei-jing, LIUJun, CHENJie, et al. Strength and ultimate carrying capacity analysis of cylindrical shells with special ribs[J]. Chinese Journal of Ship Research, 2014, 9(2): 30-36.
[7] 操安喜,崔维成. 基于响应面模型和遗传算法的载人潜水器耐压球壳优化设计[C/OL]//船舶结构力学学术会议论文集. 北京:中国造船工程学会,2005:332-339. 2014-05-20)[2019-06-01]. http://www.doc88.com/p-5187167782705.html.
CAOAn-xi, CUIWei-cheng. Response surface and genetic algorithm based optimal design of the pressure spherical hull in deep manned submersible[C/OL]// Proceedings of the Academic Conference on Ship Structural Mechanics. Beijing: The Chinese Society of Naval Rachitects and Marine Engineers, 2005: 332-339. 2014-05-20)[2019-06-01]. http://www.doc88.com/p-5187167782705.html.
[8] 杨岳,何雪浤,谷海涛,等. 水下机器人耐压壳体结构优化[J]. 机械科学与技术,2016,35(4):614-619. doi:10.13433/j.cnki.1003-8728.2016.0421 YANGYue, HEXue-hong, GUHai-tao, et al. Structure optimization of underwater robot pressure hull[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(4): 614-619.
[9] 宋保维,朱崎峰,王鹏. 基于组合优化方法的UUV耐压壳体优化设计研究[J]. 机械科学与技术,2010,29(5): 561-565. doi:10.13433/j.cnki.1003-8728.2010.05.020 SONGBao-wei, ZHUQi-feng, WANGPeng. Optimization design for unmaned underwater vechile (UUV) shell based on combinatorial optimization methods[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5): 561-565.
[10] 董华超,宋保维,王鹏. 水下航行器壳体结构多目标优化设计研究[J]. 兵工学报,2014,35(3):392-397. doi: 10.3969/j.issn.1000-1093.2014.03.015 DONGHua-chao, SONGBao-wei, WANGPeng. Multi-objective optimal design of automatic underwater vehicle shell structure[J]. Acta Armamentarii, 2014, 35(3): 392-397.
[11] 苗怡然,高良田,梁旭,等. 水下航行器耐压壳体参数化设计优化[J]. 大连海事大学学报,2017,43(2):33-38.doi:10.16411/j.cnki.issn1006-7736.2017.02.006 MIAOYi-ran, GAOLiang-tian, LIANGXu, et al. Parametric optimization design of pressure hull for automatic underwater vehicle[J]. Journal of Dalian Maritime University, 2017, 43(2): 33-38.
[12] 隋允康,宇慧平. 响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,201l:8-10. Yun-kangSUI, YUHui-ping. The improved response surface method and its application to engineering[M]. Beijing: Science Press, 2011: 8-10.
[13] RAOS S, FREIHEITT I. A modified game theory approach to multiobjective optimization[J]. Journal of Mechanical Design, 1991, 113(3): 286-291. doi: 10. 1115/1.2912781
[14] 秦浩星,杨德庆. 多工况结构拓扑优化的灰色权重折衷规划模型法[J]. 力学季刊,2018,39(2):280-293. doi:10.15959/j.cnki.0254-0053.2018.02.006 QINHao-xing, YANGDe-qing. Compromise programming approach with grey weight factor for structural topology optimization under multiple load conditions[J]. Chinese Quarterly of Mechanics, 2018, 39(2): 280-293.
[15] 费智聪. 熵权-层次分析法与灰色-层次分析法研究[D]. 天津:天津大学管理学院,2009:23-25. FEIZhi-cong. Research on entropy weight-analytic hierarchy process and grey-analytic hierarchy process[D]. Tianjin: Tianjin University, College of Management, 2009: 23-25.
[16] SUBRAMANIANN, RAMANATHANR. A review of applications of analytic hierarchy process in operations management[J]. International Journal of Production Economics, 2012, 138(2): 215-241. doi:10.1016/j.ijpe.2012.03.036
[17] 鲁鹏,耿文豹. 海洋探测型AUV壳体设计与强度校核[J]. 舰船科学技术,2015,37(5):119-121. doi:10.3404/j.issn.1672-7649.2015.05.025 LUPeng, GENGWen-bao. Design and strength check of pressure hull of ocean exploration AUV[J]. Ship Science and Technology, 2015, 37(5): 119-121.
[18] 孟令帅,林扬,郑荣,等. 模块化自主水下机器人的机械设计与实现[J]. 机器人,2016,38(4):395-401. doi:10.13973/j.cnki.robot.2016.0395 MENGLing-shuai, LINYang, ZHENGRong, et al. Mechanical design and implementation of a modular autonomous underwater vehicle[J]. Robot, 2016, 38(4): 395-401.
[19] 中国船级社.潜水系统和潜水器入级与建造规范2018[M]. 北京:人民交通出版社,2018:20-29. China Classification Society. Rules for classification of diving systems and submersibles 2018 [M]. Beijing: China Communications Press, 2018: 20-29.
[1] 苏芳, 罗茹楠, 刘艳明, 王晨升. 双轴联动进给系统多目标优化设计与研究[J]. 工程设计学报, 2020, 27(4): 456-462.
[2] 张帅, 韩军, 涂群章, 杨小强, 杨旋. 基于GA-NLP的剪刀式折叠桥梁展桥机构多目标优化设计[J]. 工程设计学报, 2020, 27(1): 67-75.
[3] 王哲, 陈勇, 曹展, 李光鑫, 左扣成. 纯电动汽车两挡变速器减振降噪研究[J]. 工程设计学报, 2019, 26(3): 280-286.
[4] 杨晨光, 邵宝东, 王丽凤, 杨洋. 基于热阻网络模型的硅基微槽热沉多目标优化设计[J]. 工程设计学报, 2018, 25(4): 426-433.
[5] 陈洪武, 彭聪聪, 田铖, 王立原. 基于响应面法对桁架结构形状的优化设计[J]. 工程设计学报, 2018, 25(4): 457-464.
[6] 杨绍勇, 雷飞, 陈园. 基于铺层设计特征的碳纤维增强复合材料悬架控制臂结构优化[J]. 工程设计学报, 2016, 23(6): 600-605,619.
[7] 邬思敏, 孟文俊, 李淑君, 王尧, 徐成功. 双线圈旁置式新型磁流变制动器的设计与优化[J]. 工程设计学报, 2016, 23(5): 453-460.
[8] 毛 君,李 强,谢 苗,曹建南. 多目标优化软件开发及其应用[J]. 工程设计学报, 2015, 22(3): 262-268.
[9] 李丽娟, 黄振华, 刘锋. 用于结构优化设计的改进多目标群搜索算法[J]. 工程设计学报, 2013, 20(1): 11-17.
[10] 金雅娟,张义民. 基于鞍点逼近的机械结构可靠性稳健优化设计[J]. 工程设计学报, 2012, 19(2): 81-85.
[11] 卢青波, 张学良, 温淑花, 兰国生, 刘丽琴. 基于差异演化算法和多属性决策的机电系统可靠性多目标优化设计[J]. 工程设计学报, 2011, 18(6): 412-417.
[12] 钱学毅, 吴 双. 基于弹流润滑理论的非对称齿轮胶合强度多目标优化[J]. 工程设计学报, 2010, 17(6): 426-429.
[13] 刘仁云, 于繁华, 张义民. 基于多目标优化策略的扭杆可靠性稳健优化设计[J]. 工程设计学报, 2010, 17(3): 181-185.
[14] 聂相虹, 俞小莉, 胡军强, 陈平录. 进排气开启角对气动发动机的影响及其优化设计[J]. 工程设计学报, 2009, 16(1): 16-20.
[15] 程贤福. 基于公理设计和相容决策支持问题法的稳健优化设计方法[J]. 工程设计学报, 2008, 15(6): 393-397.