优化设计 |
|
|
|
|
UUV耐压结构多目标优化设计 |
高启升1,2, 朱兴华1,2, 于延凯1,2, 郑荣1,2 |
1.中国科学院 沈阳自动化研究所, 辽宁 沈阳 110016; 2.中国科学院 机器人与智能制造创新研究院, 辽宁 沈阳 110016 |
|
Multi-objective optimal design of UUV pressure structure |
GAO Qi-sheng1,2, ZHU Xing-hua1,2, YU Yan-kai1,2, ZHENG Rong1,2 |
1.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2.Institute of Robotics and Intelligent Manufacturing Innovation, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
高启升, 朱兴华, 于延凯, 郑荣. UUV耐压结构多目标优化设计[J]. 工程设计学报, 2020, 27(2): 232-238.
GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure. Chinese Journal of Engineering Design, 2020, 27(2): 232-238.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2020.00.030
或
https://www.zjujournals.com/gcsjxb/CN/Y2020/V27/I2/232
|
[1] 肖玉杰,邱志明,石章松. UUV国内外研究现状及若干关键问题综述[J]. 电光与控制,2014,21(2):46-49,89. doi: 10.3969/j.issn.1671-637X.2014.02.011 XIAOYu-jie, QIUZhi-ming, SHIZhang-song. On current research status of UUV and its critical technologies[J]. Electronics Optics & Control, 2014, 21 (2): 46-49, 89. [2] 王蓬. 军用UUV的发展与应用前景展望[J]. 水下无人系统学报,2009,17(1):5-9. doi: 10.3969/j.issn.1673-1948.2009.01.002 WANGPeng. Current development status and future application of navy UUVs[J]. Journal of Unmanned Undersea Systems, 2009, 17(1): 5-9. [3] 钱东,赵江,杨芸. 军用UUV发展方向与趋势(上):美军用无人系统发展规划分析解读[J]. 水下无人系统学报,2017,25(1):1-30. doi: 10.11993/j.issn.2096-3920.2017.01.001 QIANDong, ZHAOJiang, YANGYun. Development trend of military UUV(1): a review of U. S. military unmanned system development plan[J]. Journal of Unmanned Undersea Systems, 2017, 25(1): 1-30. [4] 熊传志,武雷. 大直径UUV耐压壳体的结构设计[J]. 水雷战与舰船防,2015,23(2):29-34. XIONGChuan-zhi, WULei. Structural design of large diameter UUV pressure hull[J]. Mine Warfare & Ship-Defence, 2015, 23(2): 29-34. [5] 吕春雷,王晓天,姚文,等. 多种型式肋骨加强的耐压圆柱壳体结构稳定性研究[J].船舶力学,2006,10(5):113-118. doi: 10.3969/j.issn.1007-7294.2006.05.016 Chun-leiLü, WANGXiao-tian, YAOWen, et al. Study of buckling of cylindrical shell ring-stiffened by manifold stiffeners under hydrostatic pressure[J]. Journal of Ship Mechanics, 2006, 10(5): 113-118. [6] 刘培婧,刘均,陈杰,等.具有特殊肋骨型式的耐压壳体强度与极限承载能力分析[J]. 中国舰船研究,2014,9(2):30-36. doi: 10.3969/j.issn.1673-3185.2014.02.006 LIUPei-jing, LIUJun, CHENJie, et al. Strength and ultimate carrying capacity analysis of cylindrical shells with special ribs[J]. Chinese Journal of Ship Research, 2014, 9(2): 30-36. [7] 操安喜,崔维成. 基于响应面模型和遗传算法的载人潜水器耐压球壳优化设计[C/OL]//船舶结构力学学术会议论文集. 北京:中国造船工程学会,2005:332-339. 2014-05-20)[2019-06-01]. http://www.doc88.com/p-5187167782705.html. CAOAn-xi, CUIWei-cheng. Response surface and genetic algorithm based optimal design of the pressure spherical hull in deep manned submersible[C/OL]// Proceedings of the Academic Conference on Ship Structural Mechanics. Beijing: The Chinese Society of Naval Rachitects and Marine Engineers, 2005: 332-339. 2014-05-20)[2019-06-01]. http://www.doc88.com/p-5187167782705.html. [8] 杨岳,何雪浤,谷海涛,等. 水下机器人耐压壳体结构优化[J]. 机械科学与技术,2016,35(4):614-619. doi:10.13433/j.cnki.1003-8728.2016.0421 YANGYue, HEXue-hong, GUHai-tao, et al. Structure optimization of underwater robot pressure hull[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(4): 614-619. [9] 宋保维,朱崎峰,王鹏. 基于组合优化方法的UUV耐压壳体优化设计研究[J]. 机械科学与技术,2010,29(5): 561-565. doi:10.13433/j.cnki.1003-8728.2010.05.020 SONGBao-wei, ZHUQi-feng, WANGPeng. Optimization design for unmaned underwater vechile (UUV) shell based on combinatorial optimization methods[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5): 561-565. [10] 董华超,宋保维,王鹏. 水下航行器壳体结构多目标优化设计研究[J]. 兵工学报,2014,35(3):392-397. doi: 10.3969/j.issn.1000-1093.2014.03.015 DONGHua-chao, SONGBao-wei, WANGPeng. Multi-objective optimal design of automatic underwater vehicle shell structure[J]. Acta Armamentarii, 2014, 35(3): 392-397. [11] 苗怡然,高良田,梁旭,等. 水下航行器耐压壳体参数化设计优化[J]. 大连海事大学学报,2017,43(2):33-38.doi:10.16411/j.cnki.issn1006-7736.2017.02.006 MIAOYi-ran, GAOLiang-tian, LIANGXu, et al. Parametric optimization design of pressure hull for automatic underwater vehicle[J]. Journal of Dalian Maritime University, 2017, 43(2): 33-38. [12] 隋允康,宇慧平. 响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,201l:8-10. Yun-kangSUI, YUHui-ping. The improved response surface method and its application to engineering[M]. Beijing: Science Press, 2011: 8-10. [13] RAOS S, FREIHEITT I. A modified game theory approach to multiobjective optimization[J]. Journal of Mechanical Design, 1991, 113(3): 286-291. doi: 10. 1115/1.2912781 [14] 秦浩星,杨德庆. 多工况结构拓扑优化的灰色权重折衷规划模型法[J]. 力学季刊,2018,39(2):280-293. doi:10.15959/j.cnki.0254-0053.2018.02.006 QINHao-xing, YANGDe-qing. Compromise programming approach with grey weight factor for structural topology optimization under multiple load conditions[J]. Chinese Quarterly of Mechanics, 2018, 39(2): 280-293. [15] 费智聪. 熵权-层次分析法与灰色-层次分析法研究[D]. 天津:天津大学管理学院,2009:23-25. FEIZhi-cong. Research on entropy weight-analytic hierarchy process and grey-analytic hierarchy process[D]. Tianjin: Tianjin University, College of Management, 2009: 23-25. [16] SUBRAMANIANN, RAMANATHANR. A review of applications of analytic hierarchy process in operations management[J]. International Journal of Production Economics, 2012, 138(2): 215-241. doi:10.1016/j.ijpe.2012.03.036 [17] 鲁鹏,耿文豹. 海洋探测型AUV壳体设计与强度校核[J]. 舰船科学技术,2015,37(5):119-121. doi:10.3404/j.issn.1672-7649.2015.05.025 LUPeng, GENGWen-bao. Design and strength check of pressure hull of ocean exploration AUV[J]. Ship Science and Technology, 2015, 37(5): 119-121. [18] 孟令帅,林扬,郑荣,等. 模块化自主水下机器人的机械设计与实现[J]. 机器人,2016,38(4):395-401. doi:10.13973/j.cnki.robot.2016.0395 MENGLing-shuai, LINYang, ZHENGRong, et al. Mechanical design and implementation of a modular autonomous underwater vehicle[J]. Robot, 2016, 38(4): 395-401. [19] 中国船级社.潜水系统和潜水器入级与建造规范2018[M]. 北京:人民交通出版社,2018:20-29. China Classification Society. Rules for classification of diving systems and submersibles 2018 [M]. Beijing: China Communications Press, 2018: 20-29. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|