Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (2): 211-216    DOI: 10.3785/j.issn.1006-754X.2017.02.013
整机和系统设计     
焊接机器人翻转工作台的设计与分析
卢清华, 徐沧强
佛山科学技术学院 机电工程学院, 广东 佛山 528000
Design and analysis of turnover platform for welding robot
LU Qing-hua, XU Cang-qiang
School of Mechanical Electrical Engineering, Foshan University, Foshan 528000, China
 全文: PDF(1672 KB)   HTML
摘要:

针对焊接精度要求不高的焊接机器人应用场合,设计出一种成本较低、位置控制精度较好的翻转式焊接工作台,以满足中低端产品的焊接工艺要求。在该翻转式焊接工作台中,采用气动马达作动力输出,蜗轮蜗杆大传动比传动系统作高精度分度装置,光电编码器作位置信息获取装置,并通过闭环控制实现高精度翻转运动。仿真结果表明,该焊接工作台最高转速达到14 r/min,能够满足大多数产品的焊接需求。设计的焊接机器人翻转工作台为中低端焊接产品提供了一种经济、有效的焊接机器人应用方案,对降低焊接机器人的应用成本、提高焊接生产效率具有重要意义。

关键词: 焊接机器人焊接工作台变位机    
Abstract:

A turnover platform for welding robot was designed for the application of welding robot with lower accuracy requirement, which was of low cost and higher position accuracy. In this turnover platform, the pneumatic motor was used as the power output, and the indexing mechanism with high accuracy was the transmission system with high transmitting ratio based on worm and wheel. The position information was acquired by using the photoelectric encoder, and the turnover motion with high accuracy was realized through the closed-loop controller. Simulation results showed that the maximum speed of the welding platform approached 14 r/min, and the platform could meet the requirements of most welding products. Such a turnover platform can offer the application program of the welding robot with low cost for the middle and low level products, and reduce the cost of welding robot and improve welding productivity.

Key words: welding robot    welding platform    positioner
出版日期: 2017-04-28
CLC:  TH12  
基金资助:

广东省自然科学基金资助项目(2014A030313616);广东省科技计划项目(2015B010101015);佛山市科技创新专项资金资助项目(2015AG10018)

作者简介: 卢清华(1978-),男,江西修水人,教授,博士,从事精密机械装备和视觉检测技术研究,E-mail:qhlu@fosu.edu.cn,http://orcid.org//0000-0002-7861-1472
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢清华
徐沧强

引用本文:

卢清华, 徐沧强. 焊接机器人翻转工作台的设计与分析[J]. 工程设计学报, 2017, 24(2): 211-216.

LU Qing-hua, XU Cang-qiang. Design and analysis of turnover platform for welding robot[J]. Chinese Journal of Engineering Design, 2017, 24(2): 211-216.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.02.013        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I2/211

[1] 罗辉. 焊接机器人与变位机的协调运动规划[D]. 哈尔滨:哈尔滨工业大学深圳研究生院, 2013:1-5. LUO Hui. Coordinated motion planning of the welding robot and positioner[D]. Harbin: Institute of Technology, Graduate School at Shenzhen, 2013: 1-5.
[2] 宋金虎. 我国焊接机器人的应用与研究现状[J].电焊机, 2009, 39(4): 18-20. SONG Jin-hu. Application and research situation of welding robot in China[J]. Electric Welding Machine, 2009, 39(4): 18-20.
[3] 吴晓, 华亮, 顾菊平, 等. 基于超声波电机的移动焊接机器人焊枪精密定位控制系统研制[J].工程设计学报,2010,17(5):372-376. WU Xiao, HUA Liang, GU Ju-ping, et al. Research on welding torch precision positioning control system for welding mobile robot using ultrasonic motors[J]. Chinese Journal of Engineering Design, 2010, 17(5):372-376.
[4] 吕学勤, 张轲, 吴毅雄. 移动焊接机器人轨迹跟踪控制机制及实验[J]. 上海交通大学学报, 2015, 49(3): 371-374. LV Xue-qin, ZHANG Ke, WU Yi-xiong. Seam tracking control mechanism and theoretical analysis of welding mobile robot [J]. Journal of Shanghai Jiaotong University, 2015, 49(3): 371-374.
[5] 彭园,张华,叶艳辉. 移动焊接机器人控制系统设计[J]. 热加工工艺, 2015, 44(5): 172-174. PENG Yuan, ZHANG Hua, YE Yan-hui. Design on control system for mobile welding robot[J]. Hot Working Technology, 2015, 44(5): 172-174.
[6] 张英华. 焊接机器人工作站的设计[J]. 电焊机, 2014, 44(8): 104-106. ZHANG Ying-hua. Design of welding robot workstation[J]. Electric Welding Machine, 2014, 44(8): 104-106.
[7] 杨易琳, 牛潮, 江燕. 机器人焊接铝合金模板的变位机设计[J]. 电焊机, 2013, 43(10): 47-50. YANG Yi-lin, NIU Chao, JIANG Yan. Design of positioned in robot welding system for aluminum formwork[J]. Electric Welding Machine, 2013, 43(10): 47-50.
[8] 周超, 顾慧萍, 王丽. 基于DSP 的焊接进给工作台伺服控制系统的研究[J]. 机械设计与制造, 2008(3): 142-144. ZHOU Chao, GU Hui-ping, WANG Li. Study on servo control sys tem based on DSP of feed table for welding[J]. Machinery Design & Manufacture, 2008(3): 142-144.
[9] 李广军, 高曾辉, 陈劲松. 基于粒子群优化的焊接工作台伺服系统 PID 控制[J]. 电焊机, 2012, 42(6): 109-112. LI Guang-jun, GAO Zeng-hui, CHEN Jing-song. PID control of feed table positioner for welding based on particle swarm optimization[J]. Electric Welding Machine, 2012, 42(6): 109-112.
[10] 刘正君, 刘少林, 熊雄, 等. 直流速度饱和和同步调速系统在焊接变位机上的应用[J]. 电焊机, 2014, 44(7): 59-63. LIU Zheng-jun, LIU Shao-lin, XIONG Xiong, et al. Application of DC saturated synchronous speed control system in the welding positional machine[J]. Electric Welding Machine, 2014, 44(7): 59-63.
[11] 张姝, 王滨, 柏久阳, 等. 高精度焊接变位机定位系统设计[J]. 热加工工艺, 2012, 41(3): 108-110. ZHANG Shu, WANG Bin, BAI Jiu-yang, et al. Positioning system design of high precision welding positioner[J]. Hot Working Technology, 2012, 41(3): 108-110.
[12] 覃福江,林义忠,刘庆国. 基于PLC 的数控焊接变位机控制系统开发[J]. 机床与液压, 2014,42(14):113-115. QIN Fu-jiang, LIN Yi-zhong, LIU Qing-guo. Development of control system of welding positioner based on PLC[J]. Machine Tool & Hydraulics, 2014, 42(14):113-115.
[13] 赵欢,刘晓春. 基于最小二乘法的变位机与焊接机器人的位置关系标定[J].电焊机, 2015, 45(1):85-88. ZHAO Huan, LIU Xiao-chun. Calibration position relation of positioner and welding robot based on least square method[J]. Electric Welding Machine, 2015, 45(1): 85-88.
[14] 张见全, 高顶. 座式焊接变位机的改进[J]. 煤矿机械, 2012, 33(11): 184-185. ZHANG Jian-quan, GAO Ding. Improvement of block-type welding positioner[J]. Coal Mine Machinery, 2012, 33(11): 184-185.
[15] 曾昭文, 卓雪艳, 曾盛绰, 等.一种小型复杂焊件自动化焊接通用工作台的设计与研究[J]. 机械设计与制造, 2015(7): 153-159. ZENG Zhao-wen, ZHUO Xue-yan, ZENG Sheng-chuo, et al. Design and research of automatic welding universal bench for compact complex weldments[J]. Machinery Design & Manufacture, 2015(7): 153-159.
[16] 王梅香. 不锈钢筛板焊接翻转工作台的设计[J]. 煤矿机械, 2012, 33(7): 129-130. WANG Mei-xiang. Stainless steel screen welding flip plate of design[J]. Coal Mine Machinery, 2012, 33(7): 129-130.
[17] 陈允刚, 王军. 动力电池外壳激光焊接工作台设计[J]. 激光杂志, 2015, 36(12):120-122. CHEN Yun-gang, WANG Jun. Design of laser welding bench for the shell of power battery [J]. Laser Journal, 2015, 36(12): 120-122.
[1] 吴晓, 华亮, 顾菊平, 王胜锋, 张齐, 倪玲. 基于超声波电机的移动焊接机器人焊枪精密定位控制系统研制[J]. 工程设计学报, 2010, 17(5): 372-376.