Please wait a minute...
工程设计学报  2013, Vol. 20 Issue (5): 404-408    
工程设计理论、方法与技术     
基于分段悬链线理论的悬索分析矩阵迭代法
 秦剑, 夏拥军
中国电力科学研究院,北京 100192
The matrix iteration method for analysis of suspension cable based on segmental catenary theory
 QIN  Jian, XIA  Yong-Jun
China Electric Power Research Institute, Beijing 100192, China
 全文: PDF(1158 KB)   HTML
摘要: 通过分析现有悬索计算的主要方法,在分段悬链线解析计算方法的基础上,结合求解非线性方程组的牛顿迭代法,提出了适用于悬索分析的矩阵迭代方法.根据解析推导给出了悬索矩阵迭代法的切线刚度矩阵构造方法,分析了刚度矩阵的特点,针对特定的工程问题列出了悬索找形的迭代计算流程.该方法计算量小,效率高,计算精度能够满足实际工程需要.通过与其他文献的数值计算结果进行对比,验证了所研究方法的可靠性.该方法适用于悬索桥、货运索道等各类悬索结构的分析计算.
关键词: 悬索分段悬链线刚度矩阵迭代法找形    
Abstract: A matrix iteration method is proposed based on the analytic method of segmental catenary for the suspension cable. The method was developed from the Newton iteration method for the nonlinear equations according to the analysis of different common methods. The tangent stiffness matrix of the iteration method was presented and the characteristics of the stiffness matrix were discussed. Then the iterative calculation process of suspension cables formfinding for the specific engineering problem was listed. The method offers significant improvements on accuracy, efficiency and calculation amount of the solution, which can meet the needs of practical engineering. The results of the Newton iteration method are compared with the numerical results in other literatures and the contrast verifies the reliability of this method. The method is suitable for the analysis of suspension bridges, cargo ropeways and other various types of cable structures.
Key words: suspension cable    segmental catenary    stiffness matrix    iteration    form-finding
出版日期: 2013-10-28
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
秦剑
夏拥军

引用本文:

秦剑, 夏拥军. 基于分段悬链线理论的悬索分析矩阵迭代法[J]. 工程设计学报, 2013, 20(5): 404-408.

QIN Jian, XIA Yong-Jun. The matrix iteration method for analysis of suspension cable based on segmental catenary theory. Chinese Journal of Engineering Design, 2013, 20(5): 404-408.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/        https://www.zjujournals.com/gcsjxb/CN/Y2013/V20/I5/404

[1] 张文韬,张友鹏,苏宏升,杨蕾. 基于动态故障树的CTCS-3级ATP系统可靠性分析[J]. 工程设计学报, 2014, 21(1): 18-26.
[2] 肖浩, 宋晓琳, 曹昊天. 基于危险斥力场的自动驾驶汽车主动避撞局部路径规划[J]. 工程设计学报, 2012, 19(5): 379-384.
[3] 关富玲, 汪有伟, 杨超辉. 新型折叠卷收式反射阵天线的设计与制作[J]. 工程设计学报, 2008, 15(6): 466-471.
[4] 梅秀道,汪正兴,秦建刚,崔清强,刘彦峰. 悬索桥索股下料长度求解方法及其影响因素分析[J]. 工程设计学报, 2008, 15(4): 308-312.
[5] 袁曾燕, 芮延年, 赵葵, 陈欢. 基于压电理论的悬索桥工作状况智能监测与诊断方法[J]. 工程设计学报, 2007, 14(6): 453-456.
[6] 胡浩. 新型混沌映射牛顿迭代法研究与曲柄滑块机构函数综合[J]. 工程设计学报, 2006, 13(2): 114-115.
[7] 罗佑新, 黎大志. 求一般6-SPS并联机器人机构的全部位置
正解的混沌迭代方法
[J]. 工程设计学报, 2003, 10(2): 70-74.
[8] 徐军民, 郭明, 陈宗农, 詹建潮. 基于非线性刚度约束下的精密机床主轴系统优化设计[J]. 工程设计学报, 2002, 9(2): 73-76.
[9] 徐旭东, 关富玲, 陈春来. 叶片形膜结构的找形[J]. 工程设计学报, 2001, 8(3): 143-145.
[10] 张淑杰, 关富玲, 张京街. 空间可展结构能量节点的设计和动力分析[J]. 工程设计学报, 2001, 8(2): 53-56.