Please wait a minute...
工程设计学报  2008, Vol. 15 Issue (5): 361-364    
机电一体化和智能化系统设计理论、方法与技术     
基于小波变换的裂谱分析法
 沈晓安1, 杨克己2
1. 浙江工业大学 浙西分校,浙江 衢州 324000; 2.浙江大学 现代制造工程研究所,浙江 杭州 310027
Split spectrum processing technique based on wavelet transform
 SHEN  Xiao-An1, YANG  Ke-Ji2
1. Zhexi College, Zhejiang University of Technology, Quzhou 324000, China;
2. Institute of Modern Manufacture Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(240 KB)   HTML
摘要: 为了提高超声无损检测(UNDT)和无损评价(UNDE)中基础数据的信噪比(SNR),提出了一种基于小波变换多分辨率分析的裂谱分析新方法.该方法在分析传统裂谱分析(SSP)方法原理及其局限性的基础上,通过采用小波变换多分辨率分析能力将原始超声回波信号进行等Q子带分解,然后按照一定的信噪分离规则来消除噪声,达到提高信噪比的目的.实验结果表明,与传统裂谱分析方法相比,该方法提高了消噪性能的稳定性,增强了湮没晶粒(或其他散射体)散射中的缺陷回波信号能力.
关键词: 超声无损检测信噪比裂谱分析小波变换    
Abstract: To enhance the signal to noise ratio (SNR) of fundamental ultrasonic echo signals for ultrasonic nondestructive testing (UNDT) and ultrasonic nondestructive evaluation (UNDE), a new method called split spectrum processing technique based on wavelet transform multi-resolution analysis ability was presented. After the shortcomings and principle of classical split spectrum (SSP) algorithm were analyzed, ultrasonic echo signals were decomposed into sub-bands of constant Q by using wavelet transform multi-resolution analysis ability. Then a signal and noise separator was used to distinguish the target signals from the noises, and the target signals were reconstructed to realize the purpose of enhancing SNR by removing noises. The experiment results indicate that the presented technique has high de-noising performance reliability and improves the SNR enhancing ability for ultrasonic target echo signals contaminated by material noises compared with the classical SSP algorithm.
Key words: UNDT    SNR    split spectrum processing    wavelet transform
出版日期: 2008-10-28
基金资助:

国家高技术研究发展计划(863计划)资助项目(2006AA04Z329)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈晓安
杨克己

引用本文:

沈晓安, 杨克己. 基于小波变换的裂谱分析法[J]. 工程设计学报, 2008, 15(5): 361-364.

SHEN Xiao-An, YANG Ke-Ji. Split spectrum processing technique based on wavelet transform[J]. Chinese Journal of Engineering Design, 2008, 15(5): 361-364.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/        https://www.zjujournals.com/gcsjxb/CN/Y2008/V15/I5/361

[1] 黄羽鹏, 张家波, 雷正保. 基于满意度函数的新型逃生管道多目标稳健性设计[J]. 工程设计学报, 2019, 26(1): 20-28.
[2] 邢梦龙, 刘佳鑫, 路春光, 蒋炎坤. 平地机冷却风扇的改进与信噪比分析[J]. 工程设计学报, 2017, 24(5): 563-571.
[3] 刘宏骏,毕凤荣,张 剑. 轮式装载机驾驶室噪声源分离和识别[J]. 工程设计学报, 2015, 22(1): 66-71.
[4] 沈晓安. 基于提升小波变换的超声信号消噪技术[J]. 工程设计学报, 2009, 16(3): 227-229.
[5] 杨克己, 方文平, 乔华伟, 黄一春. 基于复小波变换和支持向量机的缺陷类型识别[J]. 工程设计学报, 2008, 15(3): 182-186.
[6] 乔华伟, 杨克己.  基于小波变换的反卷积技术[J]. 工程设计学报, 2007, 14(5): 369-373.
[7] 杨克己. 一种改进型裂谱分析方法[J]. 工程设计学报, 2000, 7(4): 131-133.