Please wait a minute...
工程设计学报  2007, Vol. 14 Issue (1): 57-61    
工程设计理论、方法与技术     
基于机器视觉的鞋楦数字化及类似方法对比
 罗 胜
Shoe-last measurer based on machine vision and contrast with other digitizers
 LUO   Sheng
School of Mechanical & Electrical Engineering, Wenzhou University, Wenzhou 325035, China
 全文: PDF(248 KB)   HTML
摘要: 介绍了机器视觉的原理和目前主流的鞋楦数字化方法,讨论了机器视觉的研究发展现状、优缺点及技术上的瓶颈;重点将接触式测量、激光扫描和立体视觉这三种方法进行了对比。接触式测量可靠性高,但是精度低。激光扫描法测量精度相当高,可测量柔软易脆对象,不必作测头半径补偿,工作距离大、范围广,但是容易受物件表面光学性质影响,设备精密,价格昂贵。立体视觉方法也可测量柔软易脆对象,速度快,硬件简单,价格低廉,并且不会抹平模型上的尖点。立体视觉方法是目前正在发展的一种图像测量方法,同样能完成鞋楦数字化,与前两种方法相比,在鞋模的定制方面更为合适。
关键词: 机器视觉 接触式测量 激光测量 鞋楦    
Abstract: Machine vision principle and currently prevailing last-measure method are introduced. Research situation of machine vision and its advantages and disadvantages as well as its bottleneck in technology are discussed. This paper focuses on the contrast between contact measure, laser scanning, and machine vision. Contact measure has high reliability but low accuracy. Laser scanning has high measuring accuracy and can measure soft and fragile targets; it does not need to compensate the radius of measure head and can cover a larger range. However, laser scanning is easy to be affected by surface optical properties of parts andits price is high. Machine vision can also measure soft and fragile targets; ithas high speed, simple hardware and low price and will not smooth the sharp points of the model. Machine vision is a developing method to measure, and can complete digitization of shoe-last. Comparing to the former two methods, it is moresuitable for customization of shoe-last.
Key words: machine vision    contacting measure    laser measure    last
出版日期: 2007-02-28
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗 胜

引用本文:

罗 胜. 基于机器视觉的鞋楦数字化及类似方法对比[J]. 工程设计学报, 2007, 14(1): 57-61.

LUO Sheng. Shoe-last measurer based on machine vision and contrast with other digitizers[J]. Chinese Journal of Engineering Design, 2007, 14(1): 57-61.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/        https://www.zjujournals.com/gcsjxb/CN/Y2007/V14/I1/57

null
[1] 张爱云, 王吉华, 高崴, 张美娟. 基于机器视觉的VVT发动机转子缺陷检测系统设计[J]. 工程设计学报, 2021, 28(6): 776-784.
[2] 李梦. 基于机器视觉的车道线在线识别系统设计[J]. 工程设计学报, 2020, 27(4): 498-507.
[3] 乔景慧, 李岭. 基于机器视觉的电视机背板检测及自适应抓取研究[J]. 工程设计学报, 2019, 26(4): 452-460.
[4] 张伟, 高慧敏. 笔管缺陷自动化检测系统设计与研究[J]. 工程设计学报, 2019, 26(3): 346-353.
[5] 彭忠超, 戚媛婧, 舒斌, 颜科, 段吉安. 基于机器视觉的激光器封装自动对准系统[J]. 工程设计学报, 2017, 24(6): 687-693,716.
[6] 乔 峰,郑 堤,胡利永,魏玉艳. 基于机器视觉实时决策的智能投饵系统研究[J]. 工程设计学报, 2015, 22(6): 528-533.
[7] 陈建良, 童水光, 金涛. 鞋楦CAD系统建模研究[J]. 工程设计学报, 2004, 11(4): 197-200.
[8] 李剑, 王恒奎, 鞠华, 王文, 陈子辰. 非接触式自由曲面测量系统的研制[J]. 工程设计学报, 2000, 7(3): 48-51.