Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (3): 346-353    DOI: 10.3785/j.issn.1006-754X.2019.03.014
整机和系统设计     
笔管缺陷自动化检测系统设计与研究
张伟1, 高慧敏2
1.天津中德应用技术大学 中西机床技术培训中心, 天津 300350
2.天津中德应用技术大学 智能制造学院, 天津 300350
Design and research of pen tube defect automation detection system
ZHANG Wei1, GAO Hui-min2
1.Sino-Spanish Machine Tool Training Center, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
2.Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
 全文: PDF(2603 KB)   HTML
摘要:

中国已成为笔类产品生产大国与出口大国,而笔管检测是制笔行业的关键工艺技术。针对目前制笔行业中笔管检测的需求,设计了笔管缺陷自动化检测系统,以提高笔管缺陷检测效率及笔管制造企业的生产质量。基于机器视觉及重心分类装置,采取分模块检测系统,对笔管的缺陷形态、类型进行鉴别与统计,高效率、高精度地实现笔管缺陷检测、残次品剔除与自动分拣。采用缺陷自动检测算法,利用计算机视觉检测技术进行缺陷边缘检测,分割出笔管的缺陷区域并定义主要缺陷类型,完成对笔管缺陷的判断与分类。通过构建、训练卷积神经网络,得到了拟合度较高的卷积神经网络模型,用于分析笔管的缺陷情况。实验结果表明,笔管缺陷自动化检测系统可以客观地检测笔管的缺陷,提高笔管生产效率,提升生产线的成品质量,具有较高的工程应用价值。

关键词: 笔管缺陷机器视觉重心分离自动化检测系统    
Abstract:

China has become a major producer and exporter of pen products in the world. One of the key technologies in pen making industry is pen tube testing. Aiming at the requirement of automatic inspection, a pen tube defect automation inspection system was designed to improve the pen tube defect detection efficiency and production quality of pen tube manufacturing enterprises. Based on the machine vision and the gravity center classification device, the defect forms and types of pen tubes were identified and counted by modular detection system to achieve high-efficiency and high-precision pen tube defect detection, defect elimination and automatic sorting. Using the automatic defect detection algorithm and computer vision detection technology, the defect edge detection was carried out, the defect area of pen tube was segmented, the main defect types were defined, and the pen tube defects were judged and classified. By constructing and training convolution neural network, a convolution neural network model with high fitting degree was obtained to analyze the defect of pen tube. The experimental results show that the pen tube defect automation detection system can objectively evaluate the defects of pen tube, raise the production efficiency of pen tube, improve the quality of finished products of the production line, which has higher engineering application value.

Key words: pen tube defect    machine vision    gravity center separation    automation detection system
收稿日期: 2019-01-04 出版日期: 2019-06-28
CLC:  TP 23  
基金资助:

天津市科技计划项目技术创新引导专项科技特派员项目(18JCTPJC50300);天津中德应用技术大学校级教学改革与建设项目(ZDJY2017-25)

作者简介: 张伟(1980—),男,天津人,讲师,硕士,从事机械设计与制造及机器视觉应用研究,E-mail:tj-zhangwei@163.com,https://orcid.org/0000-0002-8452-4340
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张伟
高慧敏

引用本文:

张伟, 高慧敏. 笔管缺陷自动化检测系统设计与研究[J]. 工程设计学报, 2019, 26(3): 346-353.

ZHANG Wei, GAO Hui-min. Design and research of pen tube defect automation detection system. Chinese Journal of Engineering Design, 2019, 26(3): 346-353.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.03.014        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I3/346

1 ZHUZhao, SUZhen-wei, XIAXin-yi. Study on machine vision system for inspection of piston-covering component[J]. Science Technology and Engineering, 2012, 12(6): 1425-1427.
2 SONGGuo-hao, HUANGJin-ying, YANGHang, et al. The application of the artificial compensation in vision measurement[J]. Science Technology and Engineering, 2016,16(17):176-179,184.
3 LÜ Yan, GUOCheng, ZHANGXue-cong, et al. Pipe defects detection using circumferential guided waves based on bulk shear wave transducer[J]. Journal of Beijing University of Technology, 2018, 44(5): 725-734.
4 LIDe-wei, PEIZhen-yu. The application of the artificial compensation in vision measurement[J]. Electronic Technology & Software Engineering, 2018 (6): 65.
5 CUIZheng-yun. Mechanical design basis[M]. Tianjin:Tianjin University Press, 2000: 334-337.
6 QINDou-dou, LUJun, SONGYue-qin. The research on appearance recognition and visual inspection technology of workpiece[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(9): 84-87, 91.
7 TANGLiang, ZHANGDong-jie, GONGFa-yun, et al. Research and implementation of ceramic spool surface defect detection system based on region and multi stage optimization[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017(10): 82-86, 90.
8 YANGFei, XIAJin-jun, ZHUSi-hong. Design method of thinner electronic products based on vision[J]. Journal of Machine Design, 2013, 30(7): 106-108.
9 MAOChen-jian, ZHOUYi. The fast horizontal sideline detection for the universal omni-vision[J]. Manufacturing Technology & Machine Tool, 2012(3): 72-75.
10 WENSheng-ping, ZHANGLei. The fast horizontal sideline detection for the universal omni-vision[J]. China Plastics Industry, 2015,43(7):113-116.
11 PENGZhong-chao, QIYuan-jing, SHUBin, et al. Automatic alignment system for laser device packaging based on machine vision[J]. Chinese Journal of Engineering Design, 2017, 24(6): 687-693,716.
12 LIZhi-xian, CHENGui-hui, ZHANGSan-bing. Sorting method of chip resistors package based on machine vision[J]. Packaging Engineering, 2018, 39(17): 176-181.
13 CARRASCOM, MERYD. Automatic multiple view inspection using geometrical tracking and feature analysis in aluminum wheels[J]. Machine Vision and Applications, 2011, 22(1): 157-170. doi:10.1007/s00138-010-0255-2.
14 HAZRATALI AMD , AIZATK, YERKHANK, et al. Vision-based robot manipulator for industrial applications[J]. Procedia Computer Science, 2018, 133: 205-212. doi:10.1016/j.procs.2018.07.025
15 LIZi-Jing. Automatic detection system for drug packaging line based on machine vision[J].Packaging Engineering. 2018, 39(17): 165-169.
16 GUANJing-wei, ZHOUHu, YANGHui-bin. The research of automatic sorting system based on machine vision[J]. Mechanical Engineer, 2014(8): 18-20.
17 ZHUZuo-fu, XUChao, GEHong-mei. The application of machine vision technology in packaging field[J]. Packaging Engineering, 2010, 31(3): 24-26.
18 TANGBo, KONGJian-yi, WUShi-qian. Review of surface defect detection based on machine vision [J]. Journal of Image and Graphics, 2017, 22(12): 1640-1663.

[1] 张爱云, 王吉华, 高崴, 张美娟. 基于机器视觉的VVT发动机转子缺陷检测系统设计[J]. 工程设计学报, 2021, 28(6): 776-784.
[2] 李梦. 基于机器视觉的车道线在线识别系统设计[J]. 工程设计学报, 2020, 27(4): 498-507.
[3] 乔景慧, 李岭. 基于机器视觉的电视机背板检测及自适应抓取研究[J]. 工程设计学报, 2019, 26(4): 452-460.
[4] 彭忠超, 戚媛婧, 舒斌, 颜科, 段吉安. 基于机器视觉的激光器封装自动对准系统[J]. 工程设计学报, 2017, 24(6): 687-693,716.
[5] 乔 峰,郑 堤,胡利永,魏玉艳. 基于机器视觉实时决策的智能投饵系统研究[J]. 工程设计学报, 2015, 22(6): 528-533.
[6] 罗 胜. 基于机器视觉的鞋楦数字化及类似方法对比[J]. 工程设计学报, 2007, 14(1): 57-61.