Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (4): 367-373    DOI: 10.3785/j.issn.1006-754X.2018.04.001
设计理论与方法学     
知识库构建工具软件的设计与实现
胡艺耀1,3, 朱斌2, 张伟1, 何畏3, 沈平生1,3
1. 清华大学 机械工程系, 北京 100084;
2. 浙江华电乌溪江水利发电厂, 浙江 衢州 324000;
3. 西南石油大学 机电工程学院, 四川 成都 610500
Design and implementation of knowledge base building tool software
HU Yi-yao1,3, ZHU Bin2, ZHANG Wei1, HE Wei3, SHEN Ping-sheng1,3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100083, China;
2. Zhejiang Huadian Wuxi River Water Power Plant, Quzhou 324000, China;
3. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
 全文: PDF(1660 KB)   HTML
摘要:

人工智能研究领域之一的专家系统在工程设备上的应用需求较为广泛,但满足用户需求的应用实例很少,主要原因在于知识库构建复杂且困难,其质量得不到保障。针对这个问题,研究了知识获取存在的问题,开发了以故障树为核心表达方式的知识库构建工具软件,实现了故障诊断功能。根据工程实际需要,采用J2EE技术开发了一套B/S(browser/server,浏览器/服务器)模式知识库构建工具软件,并对知识库各模块进行了需求分析设计,包括知识模型的数据结构设计和业务层逻辑方法的设计。此外,还探讨了知识模型的多样性表达,以3种命名方式来表达完整的故障树。最后,通过实例说明了该知识库构建工具软件的可行性。研究结果表明:知识获取模块采用故障树表达方式,有利于知识库质量的提高;选择网页Web形式,可以实现多用户/多工位知识编辑和输入,显著提高知识获取效率。该知识获取辅助系统具有强通用性,为领域专家和工程师构建知识库提供了有力支持。

关键词: 专家系统故障诊断故障树知识库J2EE    
Abstract:

The expert system, one of the artificial intelligence research field, is widely used to meet the need of engineering equipment. However, the examples of satisfying the requirements of users are quite scarce due to the complexity of establishing the knowledge base and the lack of the guarantee of the quality. To solve this problem, the problems of knowledge acquisition were studied and the knowledge base building tool software based on fault tree was developed, which realized the function of fault diagnosis. According to the actual demand, the J2EE technique was used to develop a set of tool software for establishing knowledge base on B/S (browser/server) model, and the requirement analysis design of each module of knowledge base were carried out, which involved the design of model data structure and the design of business layer logical method. In addition, the diversity expression of knowledge model was discussed, and the complete fault tree was expressed in three naming ways. Finally, an example was given to illustrate the feasibility of the knowledge base building tool software. The results indicated that the expression way of fault tree was used as the core of knowledge-acquiring module to improve the quality of knowledge base. In the meanwhile, the Web form was selected to realize editing and inputting knowledge in multi-user/multi-workstation model to raise the efficiency of acquiring knowledge. Thus, this auxiliary system for knowledge acquirement has strong universality, and it can provide powerful support for domain experts and engineers to establish knowledge base.

Key words: expert system    fault diagnosis    fault tree    knowledge base    J2EE
收稿日期: 2017-11-27 出版日期: 2018-08-28
CLC:  TP182  
基金资助:

中国华电集团有限公司科研项目(HDPIKJ16-02-14)

通讯作者: 张伟(1961-),男,重庆人,教授,博士,从事人工智能故障诊断等研究,E-mail:wei-z@mail.tsinghua.edu.cn     E-mail: wei-z@mail.tsinghua.edu.cn
作者简介: 胡艺耀(1993-),男,四川成都人,硕士生,从事人工智能系统架构研究,E-mail:729736762@qq.com,https://orcid.org/0000-0003-4570-6253
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡艺耀
朱斌
张伟
何畏
沈平生

引用本文:

胡艺耀, 朱斌, 张伟, 何畏, 沈平生. 知识库构建工具软件的设计与实现[J]. 工程设计学报, 2018, 25(4): 367-373.

HU Yi-yao, ZHU Bin, ZHANG Wei, HE Wei, SHEN Ping-sheng. Design and implementation of knowledge base building tool software[J]. Chinese Journal of Engineering Design, 2018, 25(4): 367-373.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.04.001        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I4/367

[1] 贺倩.人工智能技术在移动互联网发展中的应用[J].电信网技术,2017(2):1-4. HE Qian. The application of artificial intelligence technology in the development of mobile internet[J]. Telecommunications Network Technology, 2017(2):1-4.
[2] 蒋鹏.机器学习在风险评估中的应用研究[J].电子技术与软件工程,2017(23):171. JIANG Peng. Application of machine learning in risk assessment[J]. Electronic Technology and Software Engineering, 2017(23):171.
[3] 张军阳,杨慧丽,郭阳,等.深度学习相关研究综述[J].计算机应用研究,2018,35(7):1921-1928,1936. ZHANG Jun-yang, YANG Hui-li, GUO Yang, et al. Review of deep learning[J]. Application Research of Computers, 2018, 35(7):1921-1928, 1936.
[4] 章毅,郭泉,王建勇.大数据分析的神经网络方法[J].工程科学与技术,2017,49(1):9-19. ZHANG Yi, GUO Quan, WANG Jian-yong. Big data analysis using neural networks[J]. Advanced Engineering Sciences, 2017, 49(1):9-19.
[5] 姜永常,金岩.知识构建中基于自然语言理解的全信息获取与利用[J].图书情报工作,2015,59(6):104-112. JIANG Yong-chang, JIN Yan. Full information acquisition and utilization based on natural language understanding in knowledge construction[J]. Library and Information Work, 2015, 59(6):104-112.
[6] 安茂春.故障诊断专家系统及其发展[J].计算机测量与控制,2008,16(9):1217-1219. AN Mao-chun. A survey on fault diagnosis expert systems[J]. Computer Measurement & Control, 2008, 16(9):1217-1219.
[7] 张伟,张正松.设备故障诊断知识获取方法的探讨[J].清华大学学报(自然科学版),1998,38(7):102-106. ZHANG Wei, ZHANG Zheng-song. Study on method of knowledge acquisition in malfunction diagnosis[J]. Journal of Tsinghua University (Science and Technology), 1998, 38(7):102-106.
[8] 高国伟,王亚杰,李佳卉,等.基于知识元的知识库架构模型研究[J].情报科学,2016,34(3):37-41. GAO Guo-wei, WANG Ya-jie, LI Jia-hui, et al. Knowledge base frame structure research based on knowledge element[J]. Information Science, 2016, 34(3):37-41.
[9] 靳留乾,徐洋.基于证据推理的确定因子规则库推理方法[J].计算机应用研究,2016,33(2):347-361. JIN Liu-qian, XU Yang. Certainty rule base inference method using evidential reasoning approach[J]. Application Research of Computers, 2016, 33(2):347-361.
[10] 刑立坤,汪军,徐洁.故障诊断专家系统在水电厂的应用[J].集成技术,2013,2(1):62-65. XING Li-kun, WANG Jun, XU Jie. Application of fault diagnosis expert system to hydropower plant[J]. Journal of Integration Technology, 2013, 2(1):62-65.
[11] 胡笑翔.智能变电站故障诊断软件设计[D].成都:西南交通大学电气工程学院,2014:7-63. HU Xiao-xiang. Fault diagnosis software design for inteligent substation[D]. Chengdu:Southwest Jiaotong University, School of Electrical Engineering, 2014:7-63.
[12] 曹利锋,邹树梁,唐德文.基于VC++与MATLAB的故障树分析系统[J].计算机技术与发展,2014,24(1):77-84. CAO Li-feng, ZOU Shu-liang, TANG De-wen. Fault tree analysis system based on VC++ and MATLAB[J]. Computer Technology and Development, 2014, 24(1):77-84.
[13] 李斌龙.汽车制动专家系统推理机的建立及人机界面的设计[D].吉林:吉林大学汽车工程学院,2006:1-82. LI Bin-long. The reasoning machanism construction of auto braking expert system & its I/O internface design[D]. Jilin:Jilin University, College of Automotive Engineering, 2006:1-82.
[14] 朱赵飞,包腾飞,潘建波.基于故障树知识的大坝安全诊断方法[J].水电自动化与大坝监测,2006,30(5):40-42. ZHU Zhao-fei, BAO Teng-fei, PAN Jian-bo. Fault tree knowledge-based dam safety diagnosis, 2006, 30(5):40-42.
[15] 卢延鑫.经典逻辑在人工智能知识推理中的应用[J].软件导刊,2008,7(1):22-24. LU Yan-xin. The application of classical logic on knowledge reasoning of artificial intelligence[J]. Software Guide, 2008, 7(1):22-24.
[16] 陈正,李华旺,常亮.基于故障树的专家系统推理机设计[J].计算机工程,2012,38(11):228-250. CHEN Zheng, LI Hua-wang, CHANG Liang. Design of inference engine for expert system based on fault tree[J]. Computer Engineering, 2012, 38(11):228-250.
[17] 明日科技.Java从入门到精通[M].北京:清华大学出版社,2016:3-212. Tomorrow Science and Technology. Java from entry to mastery[M]. Beijing:Tsinghua University Press, 2016:3-212.
[18] 赵满来.可视化Java GUI程序设计教程[M].北京:清华大学出版社,2015:3-117. ZHAO Man-lai. Visual Java GUI program design tutorial[M]. Beijing:Tsinghua University Press, 2015:3-117.
[19] 谢强.基于MVC模式的物资管理系统的设计与实现[D].兰州:兰州理工大学计算机与通信学院,2016:4-58. XIE Qiang. Design and implementation of material management system based on MVC[D]. Lanzhou:Lanzhou University of Technology, School of Computer and Communication, 2016:4-58.
[20] 司景萍,马继昌,牛家骅,等.基于模糊神经网络的智能故障诊断专家系统[J].振动与冲击,2017,36(4):164-171. SI Jing-ping, MA Ji-chang, NIU Jia-hua, et al. An intelligent fault diagnosis expert system based on fuzzy neural network[J]. Journal of Vibration and Shock, 2017, 36(4):164-171.
[1] 纪超,王亮,王孝敬,李小兵,曹雯. 基于MSSA-SVM的电缆隧道故障预警系统设计[J]. 工程设计学报, 2023, 30(1): 109-116.
[2] 吴国沛, 余银犬, 涂文兵. 永磁同步电机故障诊断研究综述[J]. 工程设计学报, 2021, 28(5): 548-558.
[3] 倪洪启, 金驰, 冯霏. 波纹补偿器故障诊断系统研制[J]. 工程设计学报, 2019, 26(3): 354-363.
[4] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.
[5] 刘英, 肖杨亮, 张根保, 冉琰, 李立章. 基于梯形模糊数的数控磨床砂轮架系统故障树分析[J]. 工程设计学报, 2018, 25(4): 394-401.
[6] 杨圣, 李彦, 李文强, 刘龙繁. 基于3M特征的设计知识表达模型[J]. 工程设计学报, 2018, 25(3): 245-252.
[7] 陆凤仪, 赵科渊, 徐格宁, 戚其松. 基于多源信息融合及模糊故障树的小子样可靠性评估[J]. 工程设计学报, 2017, 24(6): 609-617.
[8] 李晓豁,翁正洋,钱亚森,史尚伟,李 岩. 基于果蝇算法优化模糊RBF网络的液压破碎锤故障诊断[J]. 工程设计学报, 2015, 22(6): 540-545.
[9] 刘伟,曹国忠,檀润华,魏赛娜. 多生物效应的编码方法研究[J]. 工程设计学报, 2014, 21(1): 1-5.
[10] 张文韬,张友鹏,苏宏升,杨蕾. 基于动态故障树的CTCS-3级ATP系统可靠性分析[J]. 工程设计学报, 2014, 21(1): 18-26.
[11] 胡连军, 李彦, 李翔龙, 李文强, 万延见. 基于物-场模型的纳米空心镍球的制备方法研究[J]. 工程设计学报, 2013, 20(3): 180-184.
[12] 李玲玲, 景丽婷, 马东娟, 李志刚. 改进证据理论及其在电力系统故障诊断中的应用[J]. 工程设计学报, 2012, 19(6): 485-488.
[13] 张鲁海, 李彦, 李文强, 熊艳. 面向创新设计的专题知识库构建与应用[J]. 工程设计学报, 2012, 19(4): 241-249.
[14] 韩海涛,马红光,韩琨,郑耿乐. 关于Volterra频域核辨识的多音激励信号设计[J]. 工程设计学报, 2012, 19(2): 123-127.
[15] 郝志勇, 刘伟, 夏玮, 闫闯. 基于BP神经网络的吸运风机故障诊断[J]. 工程设计学报, 2012, 19(1): 57-60.