Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 121-131    DOI: 10.3785/j.issn.1006-754X.2025.04.173
优化设计     
极寒条件下重型柴油机润滑油箱加热管路传热性能试验研究
乔增鑫1(),孙晓霞2,3,沈丽丽2,郑思宇1,魏名山1,4()
1.北京理工大学 机械与车辆学院,北京 100081
2.中国北方车辆研究所,北京 100072
3.先进越野系统技术全国重点实验室,北京 100072
4.中国矿业大学(北京) 机电工程学院,北京 100083
Experimental study on heat transfer performance of heating pipeline of heavy-duty diesel engine's lubricant tank under extreme cold condition
Zengxin QIAO1(),Xiaoxia SUN2,3,Lili SHEN2,Siyu ZHENG1,Mingshan WEI1,4()
1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2.China North Vehicle Research Institute, Beijing 100072, China
3.Chinese Scholar Tree Ridge State Key Laboratory, Beijing 100072, China
4.School of Mechanical and Electrical Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
 全文: PDF(5218 KB)   HTML
摘要:

为了探究极寒条件下某款重型柴油机润滑油箱加热管路在预热阶段的传热性能,搭建了润滑油箱加热管路传热性能试验平台。研究了在润滑油预热过程中油箱内润滑油的温度变化规律,并调整冷却液进口温度、体积流量和润滑油初始温度等工况参数,分析不同工况对润滑油温度变化的影响。试验结果表明:当润滑油初始温度为-50 ℃时,其高黏度特性使得在预热过程中油箱内的温度分布十分不均匀,只有较少测温点的温度上升明显;提高冷却液进口温度和体积流量都会增大平均换热功率,特别是冷却液进口温度的提高对增大平均换热功率具有更加显著的作用;提高润滑油初始温度分别至-40、-30、-20 ℃,则平均换热功率呈先增大后减小的趋势,当润滑油初始温度为-40 ℃时,平均换热功率最大。研究结果为优化润滑油预热策略、改进润滑油箱加热管路的结构提供了参考。

关键词: 极寒条件冷起动润滑油预热黏度    
Abstract:

In order to investigate the heat transfer performance of heating pipeline of a heavy-duty diesel engine's lubricant tank during the preheating stage under extremely cold conditions, a test platform for heat transfer performance of the heating pipeline of lubricant tank was constructed. The temperature variation law of the lubricant in the tank during the preheating process was studied, the working parameters such as coolant inlet temperature, volume flow rate and lubricant initial temperature were adjusted, and the effects of different working conditions on the lubricant temperature variation were analyzed. The test results showed that when the lubricant initial temperature was -50 ℃, its high viscosity led to a very uneven temperature distribution inside the tank during preheating with only a few temperature measuring points showing a significant increase. Increasing the inlet temperature and volume flow rate of the coolant both increased the average heat transfer power, especially the increase of coolant inlet temperature had a more significant effect on the increase of average heat transfer power. When the lubricant initial temperature to -40, -30 and -20 °C respectively, the average heat transfer power increased first and then decreased, and when the lubricant initial temperature was -40 ℃, the average heat transfer power was maximum. The research results provide a reference for optimizing the lubricant preheating strategy and improving the structure of heating pipeline of the lubricant tank.

Key words: extreme cold condition    cold start    oil preheating    viscosity
收稿日期: 2024-10-11 出版日期: 2025-03-04
CLC:  TK 427  
基金资助: 国家国防科技工业局基础产品创新计划车用动力科研专项
通讯作者: 魏名山     E-mail: 3120220486@bit.edu.cn;mswei@bit.edu.cn
作者简介: 乔增鑫(2000—),男,硕士生,从事车辆热管理研究,E-mail: 3120220486@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
乔增鑫
孙晓霞
沈丽丽
郑思宇
魏名山

引用本文:

乔增鑫,孙晓霞,沈丽丽,郑思宇,魏名山. 极寒条件下重型柴油机润滑油箱加热管路传热性能试验研究[J]. 工程设计学报, 2025, 32(1): 121-131.

Zengxin QIAO,Xiaoxia SUN,Lili SHEN,Siyu ZHENG,Mingshan WEI. Experimental study on heat transfer performance of heating pipeline of heavy-duty diesel engine's lubricant tank under extreme cold condition[J]. Chinese Journal of Engineering Design, 2025, 32(1): 121-131.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.173        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/121

图1  测试用润滑油和冷却液
图2  润滑油物理性能
图3  润滑油箱加热管路传热性能试验平台
图4  润滑油箱结构
图5  加热管路结构
材料

比热容/

[J/(kg?K)]

密度/

(kg/m3)

导热系数/

[W/(m?K)]

PVC9001 3800.16
紫铜3858 933401
表1  PVC和紫铜的主要物性参数
图6  测温点设置
图7  标准加热工况下各测温点的润滑油温度变化曲线
图8  -50 ℃下CD 5W-40润滑油状态
图9  不同加热时间下CD5W-40润滑油状态
图10  不同冷却液进口温度下T5和T9点的温度变化曲线
图11  不同冷却液体积流量下T5和T9点的温度变化曲线
图12  不同润滑油初始温度下T5和T9点的温度变化曲线
图13  不同冷却液进口温度下换热功率和累积换热量随时间的变化曲线
图14  不同冷却液体积流量下换热功率和累积换热量随时间的变化曲线
图15  不同润滑油初始温度下换热功率和累积换热量随时间的变化曲线
图16  冷却液进口温度对平均换热功率的影响
图17  冷却液体积流量对平均换热功率的影响
图18  润滑油初始温度对平均换热功率的影响
1 MENG Z W, BAO Z Q, WU D G, et al. Emission characteristics and microstructural changes of particulate matter from diesel engine after catalyst preheating under cold start conditions[J]. Process Safety and Environmental Protection, 2024, 184: 1389-1399.
2 董文龙, 万明定, 王正江, 等. -43℃下多次喷射对柴油机冷起动特性的影响[J]. 内燃机工程, 2023, 44(5): 8-15.
DONG W L, WAN M D, WANG Z J, et al. Effects of multiple injection on cold start characteristics of a diesel engine at -43 ℃[J]. Chinese Internal Combustion Engine Engineering, 2023, 44(5): 8-15.
3 王晓宇, 王正江, 贾丹丹, 等. 极寒条件下含氧燃料对柴油机冷起动特性的影响[J]. 内燃机学报, 2024, 42(1): 18-25.
WANG X Y, WANG Z J, JIA D D, et al. Effects of oxygenated fuels on cold start characteristics of diesel engines under extreme cold conditions[J]. Transactions of CSICE, 2024, 42(1): 18-25.
4 夏旭, 张众杰, 刘伍权, 等. 高寒环境下柴油机冷启动辅助措施综述[J]. 军事交通学报, 2023, 2(3): 11-15.
XIA X, ZHANG Z J, LIU W Q, et al. Summary of auxiliary measures for cold start of diesel engine in cold environment[J]. Journal of Military Transportation, 2023, 2(3): 11-15.
5 邢俊文, 张更云, 姚新民, 等. 车用燃气轮机极寒高原环境起动与工作优势分析[J]. 兵工学报, 2023, 44(1): 214-221.
XING J W, ZHANG G Y, YAO X M, et al. Analysis of starting and operating advantages of vehicular gas turbine in extremely cold plateau environment[J]. Acta Armamentarii, 2023, 44(1): 214-221.
6 娄洪利, 崔鹏飞, 王巍. 柴油机低温冷起动预热方法的特点及选择[J]. 科学技术创新, 2017(20): 79-80.
LOU H L, CUI P F, WANG W. Characteristics and selection of preheating methods for low temperature cold start of diesel engine[J]. Scientific and Technological Innovation, 2017(20): 79-80.
7 岳玉嵩, 吴玉峰, 杨乃锋, 等. 某装甲车辆加温系统热量匹配分析[J]. 机械工程师, 2019(11): 134-136.
YUE Y S, WU Y F, YANG N F, et al. Thermal matching analysis of an armored vehicle heating system[J]. Mechanical Engineer, 2019(11): 134-136.
8 曹智焜, 吴晗, 张树纯, 等. 重型柴油机低温起动及暖机过程的颗粒排放特性[J]. 兵工学报, 2024, 45(8): 2851-2862.
CAO Z K, WU H, ZHANG S C, et al. Particle emission characteristics of heavy diesel engine during low-temperature star-up and warm-up[J]. Acta Armamentarii, 2024, 45(8): 2851-2862.
9 吕恩雨, 余磊, 朱波, 等. 低温环境下柴油机冷起动性能试验研究[J]. 内燃机与动力装置, 2024, 41(1): 23-29.
LÜ E Y, YU L, ZHU B, et al. Experimental study on low-temperature cold start performance of a diesel engine[J]. Internal Combustion Engine & Powerplant, 2024, 41(1): 23-29.
10 王捧, 任正敏, 秦彪, 等. 预热策略对柴电混合动力低温冷起动的影响[J]. 内燃机学报, 2023, 41(6): 507-514.
WANG P, REN Z M, QIN B, et al. Influence of preheating strategy on low-temperature cold start of a diesel-electric hybrid[J]. Transactions of CSICE, 2023, 41(6): 507-514.
11 KODATE S V, YADAV A K, KUMAR G N. Combustion, performance and emission analysis of preheated KOME biodiesel as an alternate fuel for a diesel engine[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2335-2345.
12 VIJAY V S, GONSALVIS J. Effect of fuel intake temperature on performance and emission of diesel engine[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1065(1): 012024.
13 KODATE S V, RAJU P S, YADAV A K, et al. Effect of fuel preheating on performance, emission and combustion characteristics of a diesel engine fuelled with Vateria indica methyl ester blends at various loads[J]. Journal of Environmental Management, 2022, 304: 114284.
14 ZHAO Y, YOU Y, LIU H B, et al. Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process[J]. Energy, 2018, 157: 690-706.
15 于亮, 马彪, 陈漫, 等. 润滑油温度对铜基湿式离合器摩擦转矩的影响[J]. 机械工程学报, 2020, 56(20): 155-163. doi:10.3901/jme.2020.20.155
YU L, MA B, CHEN M, et al. Influence of the temperature of lubricating oil on the friction torque of Cu-based wet clutch[J]. Journal of Mechanical Engineering, 2020, 56(20): 155-163.
doi: 10.3901/jme.2020.20.155
16 ESFE M H, EFTEKHARI S ALI, MOHAMMAD SAJADI S, et al. Determining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25∶75)/SAE 10W40 oil nano-lubricant[J]. Materials Today Communications, 2024, 38: 107607.
17 李昂, 郝丽春, 杨鹤, 等. 合成基润滑油聚α-烯烃低温摩擦润滑性能研究[J]. 润滑与密封, 2024, 49(5): 191-196.
LI A, HAO L C, YANG H, et al. Study on the lubrication properties of synthesis oil PAO at low temperature[J]. Lubrication Engineering, 2024, 49(5): 191-196.
18 温诗铸, 黄平. 摩擦学原理[M]. 3版. 北京: 清华大学出版社, 2008.
WEN S Z, HUANG P. Principles of tribology[M]. 3th ed. Beijing: Tsinghua University Press, 2008.
19 王延臻, 劳永新. 润滑油的低温流变学进展[J]. 润滑油, 1997, 12(5): 55-58.
WANG Y Z, LAO Y X. Advances in low temperature rheology of lubricating oils[J]. Lubricating Oil, 1997, 12(5): 55-58.
20 姜旭峰, 宗营, 邱贞慧. 润滑油低温流动性的影响因素和改善方法[J]. 合成润滑材料, 2019, 46(3): 13-16.
JIANG X F, ZONG Y, QIU Z H. Influencing factors and improvement methods on low-temperature fluidity of lubricants[J]. Synthetic Lubricants, 2019, 46(3): 13-16.
21 熊万里, 阳雪兵, 吕浪, 等. 液体动静压电主轴关键技术综述[J]. 机械工程学报, 2009, 45(9): 1-18. doi:10.3901/jme.2009.09.001
XIONG W L, YANG X B, LV L, et al. Review on key technology of hydrodynamic and hydrostatic high-frequency motor spindles[J]. Journal of Mechanical Engineering, 2009, 45(9): 1-18.
doi: 10.3901/jme.2009.09.001
22 张心爱. 基础润滑油摩擦学性能及其流变特性分析[D]. 重庆: 重庆大学, 2016. doi:10.3934/amc.2015.9.9
ZHANG X A. Analysis of tribological properties and rheological properties of basic lubricating oil[D]. Chongqing: Chongqing University, 2016.
doi: 10.3934/amc.2015.9.9
[1] 张 炎,芮延年,周宏伟,童玉武. 基于粒子群算法的高黏度大比重物料无轴螺旋输送机构优化设计[J]. 工程设计学报, 2014, 21(2): 161-165.
[2] 冯 伟, 贺石中. 摩擦学系统特征信息关系的试验研究[J]. 工程设计学报, 2011, 18(4): 288-292.