Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (4): 500-509    DOI: 10.3785/j.issn.1006-754X.2022.00.056
整机和系统设计     
旋翼翼型高速风洞动态试验装置研制
张卫国1(),李国强2(),宋奎辉3,阎旭4,赵亮亮3
1.西北工业大学 航空学院,陕西 西安 710072
2.国防科技大学 空天科学学院,湖南 长沙 410073
3.中国空气动力研究与发展中心 低速空气动力研究所,四川 绵阳 621000
4.四川同人精工科技有限公司,四川 绵阳 621000
Development of dynamic test equipment for rotor airfoil in high speed wind tunnel
Wei-guo ZHANG1(),Guo-qiang LI2(),Kui-hui SONG3,Xu YAN4,Liang-liang ZHAO3
1.School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
2.College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
3.Low Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
4.Sichuan Tongren Precision Technology Co. , Ltd. , Mianyang 621000, China
 全文: PDF(5819 KB)   HTML
摘要:

为弥补国内在旋翼翼型高速风洞动态试验模拟能力和测试精度方面的不足,基于FL-20连续式跨音速风洞,提出采用双端同步驱动旋翼翼型试验模型的方式,设计了一套高速风洞动态试验装置。该装置依托双天平动态载荷测量结合表面动态压力测量的方式,可提高旋翼翼型动态气动载荷的测量精度。风洞试验结果显示:当旋翼翼型试验模型的俯仰振荡幅值为10°时,其振荡频率可达17 Hz,且试验马赫数为0.6,雷诺数达到5×106,处于国际领先水平。所研制的动态试验装置及其相关测试技术具有较高的可靠性,且试验数据可靠、规律合理,具备了开展高速风洞动态试验的能力,可为旋翼翼型动态失速问题的研究以及真实直升机试验参数的模拟提供重要的技术支撑。

关键词: 旋翼翼型高速风洞动态失速试验装置    
Abstract:

In order to make up for the deficiency of simulation ability and test accuracy of rotor airfoil dynamic test in high speed wind tunnel at domestic, based on the FL-20 continuous transonic wind tunnel, a method of dual-end synchronous driving rotor airfoil test model was proposed, and a dynamic test equipment for the high speed wind tunnel was designed. The equipment relied on the way of dual-balance dynamic load measurement combined with surface dynamic pressure measurement, which could improve the dynamic aerodynamic load measurement accuracy of rotor airfoil. The wind tunnel test results showed that: when the pitch oscillation amplitude of rotor airfoil test model was 10°, its oscillation frequency could reach 17 Hz, the test Mach number was 0.6, and the Reynolds number was 5×106, which was at the international leading level. The developed dynamic test equipment and its related test technology have high reliability, and the test data is reliable and its law is reasonable, which has the ability to carry out high speed wind tunnel dynamic test. It can provide important technical support for the research of rotor airfoil dynamic stall and the simulation of real helicopter test parameters.

Key words: rotor    airfoil    high speed wind tunnel    dynamic stall    test equipment
收稿日期: 2021-10-27 出版日期: 2022-09-05
CLC:  V 216.8  
基金资助: 装备预先研究项目(30103010304);基础和前沿技术研究基金资助项目(PJD20190002);风雷青年创新基金资助项目(PJD20190003)
通讯作者: 李国强     E-mail: zwglxy@163.com;CARDCL@126.com
作者简介: 张卫国(1975—),男,山东兖州人,研究员,博士,从事直升机空气动力学研究,E-mail:zwglxy@163.comhttps://orcid.org/0000-0002-4355-0833
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张卫国
李国强
宋奎辉
阎旭
赵亮亮

引用本文:

张卫国,李国强,宋奎辉,阎旭,赵亮亮. 旋翼翼型高速风洞动态试验装置研制[J]. 工程设计学报, 2022, 29(4): 500-509.

Wei-guo ZHANG,Guo-qiang LI,Kui-hui SONG,Xu YAN,Liang-liang ZHAO. Development of dynamic test equipment for rotor airfoil in high speed wind tunnel[J]. Chinese Journal of Engineering Design, 2022, 29(4): 500-509.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.056        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I4/500

技术指标量值
最大俯仰振荡幅值10°
最高俯仰振荡频率15 Hz
俯仰振荡迎角范围-180°~180°
最大试验马赫数≥0.6
表1  旋翼翼型高速风洞动态试验装置技术指标要求
图1  旋翼翼型高速风洞动态试验装置安装结构
图2  双端同步运动控制机构结构示意
图3  无急回曲柄连杆机构结构简图
图4  平衡迎角调节机构示意
图5  振荡幅值调节机构示意
传感器量程/kPa
XCE-062-1.7 BAR动压传感器170
XCEL-100-1 BAR动压传感器100
表2  动态压力传感器参数
图6  双天平动态载荷测量机构示意
参数量值
天平桥路惠斯顿全桥
测量元件ZF350-3AA常温应变片
桥路数量6 个
桥路供电电压10 V
表3  天平的主要参数
图7  OA309旋翼翼型试验模型结构示意
图8  旋翼翼型试验模型一阶模态仿真结果
图9  旋翼翼型高速风洞动态试验装置一阶、二阶模态仿真结果
图10  旋翼翼型高速风洞动态试验装置控制系统框架
图11  旋翼翼型高速风洞动态试验装置控制系统上位机软件结构
图12  旋翼翼型高速风洞动态试验装置控制系统人机交互界面
参数量值
型号NOVO GL300
测量范围0°~360°
分辨率0.1°
线性度±0.25%
表4  Novotechnik角位移传感器的主要参数
图13  电位计反馈电压随时间的变化曲线
图14  旋翼翼型高速风洞动态试验装置运动性能考核结果(振荡频率为17 Hz)
图15  旋翼翼型高速风洞动态试验装置增压性能考核结果
图16  旋翼翼型试验模型同步测力测压结果对比
技术指标量值
最大俯仰振荡幅值10°
最高俯仰振荡频率17 Hz
试验雷诺数5×106
最大试验马赫数0.6
表5  旋翼翼型高速风洞动态试验装置的实际技术指标
1 LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2006: 525-527.
2 李国强,张卫国,陈立,等.风力机叶片翼型动态试验技术研究[J].力学学报,2018,50(4):751-765. doi:10.6052/0459-1879-18-108
LI Guo-qiang, ZHANG Wei-guo, CHEN Li, et al. Research on dynamic test technology for wind turbine blade airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765.
doi: 10.6052/0459-1879-18-108
3 NEGI P S, HANIFI A, HENNINGSON D S. Unsteady response of natural laminar flow airfoil undergoing small-amplitude pitch oscillations[J]. AIAA Journal, 2021, 59(8): 2868-2877. doi:10.2514/1.j059743
doi: 10.2514/1.j059743
4 马奕扬,招启军,赵国庆.基于后缘小翼的旋翼翼型动态失速控制分析[J].航空学报,2017,38(3):120312. doi:10.7527/S1000-6893.2016.0220
MA Yi-yang, ZHAO Qi-jun, ZHAO Guo-qing, et al. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120312.
doi: 10.7527/S1000-6893.2016.0220
5 喻伯平,李高华,谢亮,等.基于代理模型的旋翼翼型动态失速优化设计[J].浙江大学学报(工学版),2020,54(4):833-842. doi:10.3785/j.issn.1008-973X.2020.04.023
YU Bo-ping, LI Gao-hua, XIE Liang, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833-842.
doi: 10.3785/j.issn.1008-973X.2020.04.023
6 QIU Zhan, WANG Fu-xin. Aeroelastic responses of airfoil under dynamic stall forced to oscillate by cyclic pitch input[J]. Journal of Sound and Vibration, 2020, 479: 115366. doi:10.1016/j.jsv.2020.115366
doi: 10.1016/j.jsv.2020.115366
7 戴玉婷,严慧,王林鹏.基于非线性气动力的失速颤振计算与试验研究[J].工程力学,2020,37(8):230-236. doi:10.6052/j.issn.1000-4750.2019.03.0141
DAI Yu-ting, YAN Hui, WANG Lin-peng. Calculation and experimental study of stall flutter based on nonlinear aerodynamics[J]. Engineering Mechanics, 2020, 37(8): 230-236.
doi: 10.6052/j.issn.1000-4750.2019.03.0141
8 张庆,叶正寅.NACA0012翼型跨声速强迫运动非定常气动力模型[J].哈尔滨工程大学学报,2020,41(11):1683-1688. doi:10.11990/jheu.201903018
ZHANG Qing, YE Zheng-yin. Unsteady aerodynamic model of NACA0012 associated with forced oscillations and translations in transonic flight[J]. Journal of Harbin Engineering University, 2020, 41(11): 1683-1688.
doi: 10.11990/jheu.201903018
9 RICHTER K, KOCH S, GARDNER A D, et al. Experimental investigation of unsteady transition on a pitching rotor blade airfoil[J]. Journal of the American Helicopter Society, 2014, 59(1): 12001(1)-12001(12). doi:10.4050/jahs.59.012001
doi: 10.4050/jahs.59.012001
10 REINERT T, FLEMMING R J, NARDUCCI R, et al. Oscillating airfoil icing tests in the NASA Glenn Research Center Icing Research Tunnel[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing, Chicago, Jun. 13-17, 2011.
11 LE PAPE A, PAILHAS G, DAVID F, et al. Extensive wind tunnel tests measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects[C]//Proceedings of the 33rd European Rotorcraft Forum, Kazan, Sept. 11-13, 2007.
12 MERRILL B E, PEET Y T. Effect of impinging wake turbulence on the dynamic stall of a pitching airfoil[J]. AIAA Journal, 2017, 55(12): 4094-4112. doi:10.2514/1.J055405
doi: 10.2514/1.J055405
13 DEHKORDI M H R, SOLTANI M R, DAVARI A R. Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 122450. doi:10.1016/j.physa.2019.122450
doi: 10.1016/j.physa.2019.122450
14 GREEN R B, GILLIES E A, WANG Y. Trailing-edge flap flow control for dynamic stall[J]. The Aeronautical Journal, 2011, 115(1170): 493-503. doi:10.1017/s0001924000006138
doi: 10.1017/s0001924000006138
15 SAMARA F, JOHNSON D A. Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap[J]. AIAA Journal, 2020, 58(7): 2844-2856. doi:10.2514/1.J059115
doi: 10.2514/1.J059115
16 CASTAEDA D, WHITING N, WEBB N, et al. An experimental investigation of deep dynamic stall control using plasma actuators[J]. Experiments in Fluids, 2022, 63: 69. doi:10.1007/s00348-022-03421-w
doi: 10.1007/s00348-022-03421-w
17 张卫国,武杰,兰波,等.旋翼翼型低速风洞静、动态试验技术研究[C]//中国力学大会‒2015论文摘要集.上海:中国力学学会,2015:242.
ZHANG Wei-guo, WU Jie, LAN Bo, et al. Static and dynamic test technology for rotor airfoil low speed wind tunnel[C]//Proceedings of the Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2015). Shanghai: Chinese Society of Theoretical Applied Mechanics, 2015: 242.
18 许和勇,邢世龙,叶正寅,等.基于充气前缘技术的旋翼翼型动态失速抑制[J].航空学报,2017,38(6):120799. doi:10.7527/S1000-6893.2016.0308
XU He-yong, XING Shi-long, YE Zheng-yin, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799.
doi: 10.7527/S1000-6893.2016.0308
19 王莹,高超,吕哲.跨声速风洞翼型动态失速试验系统研制[J].科学技术与工程,2018,18(32):95-103. doi:10.3969/j.issn.1671-1815.2018.32.016
WANG Ying, GAO Chao, Zhe LÜ. The development of airfoil dynamic stall experiment system in a transonic wind tunnel[J]. Science Technology and Engineering, 2018, 18(32): 95-103.
doi: 10.3969/j.issn.1671-1815.2018.32.016
20 史志伟,耿存杰,明晓.旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J].实验流体力学,2007,21(3):18-23. doi:10.3969/j.issn.1672-9897.2007.03.004
SHI Zhi-wei, GENG Cun-jie, MING Xiao. Experimental investigation on unsteady aerodynamics of rotor-blade airfoil[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 18-23.
doi: 10.3969/j.issn.1672-9897.2007.03.004
[1] 文泽军,孟祥恒,肖钊,张帆. 基于数论网格法与Morris法的翼型气动特性敏感性分析[J]. 工程设计学报, 2022, 29(4): 438-445.
[2] 黄湘龙, 尹凤, 李艳艳, 王文凯, 赵思波. 动静轴结构旋翼轴载荷分离仿真分析与试验研究[J]. 工程设计学报, 2020, 27(2): 256-262.
[3] 潘春荣, 许化. 基于STM32的X型四旋翼无人机设计[J]. 工程设计学报, 2017, 24(2): 196-202,210.
[4] 姚灵灵,贺乃宝,高 倩,宋 伟. 四旋翼飞行器的新型自适应离散滑模控制[J]. 工程设计学报, 2015, 22(6): 602-606.
[5] 李春生, 王 武, 杜玉梅, 金能强, 严陆光. 直线型Halbach磁体和导体板构成的电动式悬浮系统的实验装置设计[J]. 工程设计学报, 2008, 15(1): 33-36.