Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (2): 133-138    DOI: 10.3785/j.issn.1006-754X.2019.02.002
设计理论与方法学     
基于差距映射的变可信度近似模型构建方法
欧卫林1, 郑君2
1.华中光电技术研究所 武汉光电国家实验室, 湖北 武汉 430223
2.中国地质大学 工程学院, 湖北 武汉 430074
Difference mapping based variable-fidelity approximation modeling method
OU Wei-lin1, ZHENG Jun1,2
1.Wuhan National Laboratory for Optoelectronics, Central China Institute of Optoelectronic Technology, Wuhan 430223, China
2.Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
 全文: PDF(759 KB)   HTML
摘要: 为缓解复杂工程产品设计优化中计算复杂度和计算精度之间的矛盾,结合最小二乘支持向量回归(least squares support vector regression,LSSVR)模型,提出一种基于差距映射的变可信度近似模型构建方法,即最小二乘支持向量回归差距映射(LSSVR with difference mapping framework,DMF-LSSVR)方法,以实现小样本条件下高精度近似模型的构建,并通过工程实例验证该方法的有效性。工程实例结果显示所提出的方法具有较高的预测精度,可为复杂工程产品的设计优化提供理论基础。
Abstract: In order to alleviate the conflict between computational complexity and accuracy in the design optimization of complex engineering products, a new difference mapping based variable-fidelity approximation modeling method based on least squares support vector regression was put forward, namely LSSVR with difference mapping framework (DMF-LSSVR), in order to achieve a highly accurate approximation model within a limited sample size. Its effectiveness was validated through several engineering cases. The results demonstrate that the proposed DMF-LSSVR achieves high predictive accuracy, which can provide theoretical basis for the design optimization of complex engineering products.
收稿日期: 2018-01-02 出版日期: 2019-04-28
CLC:  TH 122  
基金资助: 国家自然科学基金青年基金资助项目(51505439);中国博士后科学基金面上项目(2014M562085)
通讯作者: 郑君(1987—),女,湖北黄岗人,博士生,从事复杂工程产品设计优化、地质钻探装备等研究,E-mail:zjlucia1209@126.com,https://orcid.org/0000-0002-7487-8540     E-mail: zjlucia1209@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

欧卫林, 郑君. 基于差距映射的变可信度近似模型构建方法[J]. 工程设计学报, 2019, 26(2): 133-138.

OU Wei-lin, ZHENG Jun. Difference mapping based variable-fidelity approximation modeling method. Chinese Journal of Engineering Design, 2019, 26(2): 133-138.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.02.002        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I2/133

No related articles found!