Please wait a minute...
Applied Mathematics-A Journal of Chinese Universities  2020, Vol. 35 Issue (2): 244-252    DOI: 10.1007/s11766-020-3994-5
    
Boundedness in a fully parabolic quasilinear repulsion chemotaxis model of higher dimension
ZHOU Shuang-shuang , GONG Ting, YANG Jin-ge
1School of Science, Hunan City University, Yiyang 413000, China.
2School of Mathematics, Dongbei University of Finance and Economics, Dalian 116024, China.
3School of Sciences, Nanchang Institute of Technology, Nanchang 330099, China.
Download: PDF 
Export: BibTeX | EndNote (RIS)      

Abstract  We deal with the boundedness of solutions to a class of fully parabolic quasilinear
repulsion chemotaxis systems
{
ut = ? · (?(u)?u) + ? · (ψ(u)?v), (x, t) ∈ ? × (0, T),
vt = ?v ? v + u, (x, t) ∈ ? × (0, T),
under homogeneous Neumann boundary conditions in a smooth bounded domain ? ? R
N (N ≥3), where 0 < ψ(u) ≤ K(u + 1)α, K1(s + 1)m ≤ ?(s) ≤ K2(s + 1)m with α, K, K1, K2 > 0 and
m ∈ R. It is shown that if α ? m < 4N+2 , then for any sufficiently smooth initial data, the
classical solutions to the system are uniformly-in-time bounded. This extends the known result
for the corresponding model with linear diffusion.



Key wordschemotaxis      repulsion      quasilinear      fully parabolic      boundedness      high dimension     
Published: 06 July 2020
CLC:  35A01  
  35K51  
  35K57  
  35M33  
  92C17  
Cite this article:

ZHOU Shuang-shuang , GONG Ting, YANG Jin-ge. Boundedness in a fully parabolic quasilinear repulsion chemotaxis model of higher dimension. Applied Mathematics-A Journal of Chinese Universities, 2020, 35(2): 244-252.

URL:

http://www.zjujournals.com/amjcub/10.1007/s11766-020-3994-5     OR     http://www.zjujournals.com/amjcub/Y2020/V35/I2/244


Boundedness in a fully parabolic quasilinear repulsion chemotaxis model of higher dimension

We deal with the boundedness of solutions to a class of fully parabolic quasilinear
repulsion chemotaxis systems
{
ut = ? · (?(u)?u) + ? · (ψ(u)?v), (x, t) ∈ ? × (0, T),
vt = ?v ? v + u, (x, t) ∈ ? × (0, T),
under homogeneous Neumann boundary conditions in a smooth bounded domain ? ? R
N (N ≥3), where 0 < ψ(u) ≤ K(u + 1)α, K1(s + 1)m ≤ ?(s) ≤ K2(s + 1)m with α, K, K1, K2 > 0 and
m ∈ R. It is shown that if α ? m < 4N+2 , then for any sufficiently smooth initial data, the
classical solutions to the system are uniformly-in-time bounded. This extends the known result
for the corresponding model with linear diffusion.


关键词: chemotaxis,  repulsion,  quasilinear,  fully parabolic,  boundedness,  high dimension 
[1] FEI Chen, FEI Wei-yin, YAN Li-tan. Existence and Stability of Solutions to Highly Nonlinear Stochastic Differential Delay Equations Driven by G-Brownian Motion[J]. Applied Mathematics-A Journal of Chinese Universities, 2019, 34(2): 184-.