Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (4): 432-444    DOI:
    
Least squares estimation for $\alpha$-weighted fractional Brownian bridge
HAN Jing-qi1, SHEN Guang-jun2, YAN Li-tan3
1. Dept. of Info. Sci.&Tech., Donghua Univ., Shanghai 201620, China
2. Dept. of Maths, Anhui Normal Univ., Wuhu 241000, China
3. Dept. of Math., Donghua Univ., Shanghai 201620, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the asymptotic properties of $\widehat{\alpha}$ are considered, which is a least squares estimator for the parameter $\alpha$ of a weighted fractional bridge $$X_0=0,~~ \text{d}X_t=-\alpha\frac{X_t}{T-t}\text{d}t +\text{d}B^{a,b}_t, \ \ 0\leq t0, T>0$. The estimator has various convergence depending on the value of $\alpha$ as $t\rightarrow T.$ The rate of corresponding convergence is proved as well.

Key wordsweighted fractional Brownian motion      least squares estimator      convergence     
Received: 08 May 2014      Published: 19 May 2018
CLC:  O211  
Cite this article:

HAN Jing-qi, SHEN Guang-jun, YAN Li-tan. Least squares estimation for $\alpha$-weighted fractional Brownian bridge. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 432-444.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I4/432


$\alpha$-赋权分数桥的最小二乘估计

考虑赋权分数布朗运动$B^{a,b}$ 驱动的桥$X_0=0,\text{d}X_t=-\alpha\frac{X_t}{T-t}\text{d}t +\text{d}B^{a,b}_t, \ \ 0\leq t0$. 当$\alpha$ 取不同值时, 得到了其不同的收敛性质及对应收敛速度.

关键词: 赋权分数布朗运动,  最小二乘估计量,  收敛性 
[1] ZHANG Hou-chao, SHI Dong-yang. High accuracy analysis of a new low order nonconforming mixed finite element method for the EFK equation[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 437-454.
[2] XU Xing-ye. Suffcient and necessary condition for the existence of positive entire solutions of a class of singular nonlinear polyharmonic equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 403-412.
[3] TANG Xu-fei, XI Meng-mei, CHEN Wei-yang, WU Yi, WANG Xue-jun. Complete moment convergence for arrays of rowwise NA random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 66-78.
[4] GUO Ming-le, ZHU Fu-xiu. Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 55-65.
[5] DING Yang, WU Yi, WANG Xue-jun, XIE Xiu-juan, DU Ling. Complete convergence for weighted sums of widely orthant dependent random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 417-424.