Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (4): 445-456    DOI:
    
LI-ideals theory in negative non-involutive residuated lattices
LIU Chun-hui
Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the problem of ideals in negative non-involutive residuated lattices is studied by using the principle and method of universal algebras and lattice-order theory. Firstly, the notions of LI-ideals and LI-ideal generated by a non-empty subset are introduced in negative non-involutive residuated $L$, and some their properties are investigated. Secondly, lattice operations $\sqcap$ and $\sqcup$ are defined on the set $\textbf{Id}(L)$ of all LI-ideals in $L$. It is proved that $(\textbf{Id}(L), \subseteq, \sqcap, \sqcup)$ forms a distributive continuous lattice, and particularly forms a frame. Then, the notion of prime LI-ideals is introduced in $L$ and its properties are discussed. The prime LI-ideals theorem is estabLIshed in pre-LInear negative non-involutive residuated lattices. Finally, some equivalent characterizations of prime elements of LI-ideal lattice $(\textbf{Id}(L), \subseteq, \sqcap, \sqcup)$ are obtained by means of prime LI-ideals in pre-LInear negative non-involutive residuated lattice $L$.

Key wordsnegative non-involutive residuated lattice      LI-ideal      prime LI-ideal      algebraic lattice      continuous lattice      prime element     
Received: 23 November 2014      Published: 19 May 2018
CLC:  O141.1  
  O153.1  
Cite this article:

LIU Chun-hui. LI-ideals theory in negative non-involutive residuated lattices. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 445-456.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I4/445


否定非对合剩余格的LI-理想理论

综合运用泛代数和格序理论的方法和原理研究否定非对合剩余格的理想问题. 首先, 在否定非对合剩余格$L$中引入LI-理想以及由$L$的非空子集生成的LI-理想的概念并考察它们的相关性质. 其次, 在$L$的全体LI-理想之集$\textbf{Id}(L)$上定义了格运算$\sqcap$和$\sqcup$, 证明了$(\textbf{Id}(L), \subseteq, \sqcap, \sqcup)$构成一个分配的连续格, 从而构成一个Frame. 然后, 在$L$中引入素LI-理想概念并讨论其性质, 建立了预线性否定非对合剩余格的素LI-理想定理. 最后, 借助于素LI-理想之特性获得了预线性否定非对合剩余格的LI-理想格$(\textbf{Id}(L), \subseteq, \sqcap, \sqcup)$中素元的若干等价刻画.

关键词: 否定非对合剩余格,  LI-理想,  素LI-理想,  代数格,  连续格,  素元 
[1] LI Fang, PEI Dao-wu. Multiple fuzzy implications and novel methods to generate fuzzy implications[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 467-475.
[2] LIU Chun-hui. Fuzzy filters theory of residuated lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 233-247.