Abstract Contact-Riemannian manifolds, without necessarily integrable complex structures, are the generalization of pseudohermitian manifolds in CR geometry. The Tanaka-Webster-Tanno connection plays the role of Tanaka-Webster connection in the pseudohermitian case. Pseudo-hermitian immersions of CR geometry can be developed to contact-Rimannian immersions of contact Riemannian manifold, and it can be proved that any contact-Riemannian immersion is minimal.
Received: 05 November 2014
Published: 06 June 2018