Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 319-332    DOI:
    
The extended Bianchi identities and their applications in evolution equations along the geometric flows
ZHAO Chun-li1, LU Wei-jun2
1. Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
2. College of Sciences, Guangxi University for Nationalities, Naning 530006, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Based on the original second Bianchi identity, the authors derive the extended second Bianchi identities via the second or third covariant derivatives. These extended identities have some applications in the evolution equations for the Riemannian or algebraic curvature tensors along two special geometric flows, i.e. the Ricci flow and the hyperbolic geometric flow. Some examples are given to illustrate the related applications.

Key wordsextended second Bianchi identity      Ricci flow      hyperbolic geometric flow      evolution equations for the Riemannian curvature tensor      conformal normal coordinates     
Received: 23 July 2013      Published: 10 June 2018
CLC:  O186.12  
  O189.3  
Cite this article:

ZHAO Chun-li, LU Wei-jun. The extended Bianchi identities and their applications in evolution equations along the geometric flows. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 319-332.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/319


扩展的Bianchi恒等式及其在几何流演化方程中的应用

在初始版本的第一, 二Bianchi恒等式的基础上, 利用二阶或三阶协变导数引申出扩展的二阶协变和三阶协变Bianchi恒等式. 这类二阶协变Bianchi恒等式在黎曼曲率张量沿着两类特殊的几何流-里奇(Ricci)流和双曲几何流的演化方程中有一定的应用. 给出这方面的应用例子并加以阐述.

关键词: 扩展的Bianchi恒等式,  里奇流,  双曲几何流,  黎曼曲率张量演化方程,  共形正规坐标系 
No related articles found!