Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 288-294    DOI:
    
Outpaths of all length of an arc in regular multipartite tournaments
GUO Qiao-ping, CUI Li-nan
School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  An $(l-1)$-outpath of an arc $x_1x_2$ in a multipartite tournament is a path $x_1x_2\cdots x_l$ of length $l-1$ starting with $x_1x_2$, such that either $x_l$ and $x_1$ are in the same partite set or $x_l$ dominates $x_1$. Specially, $x_1x_2\cdots x_lx_1$ is a Hamilton cycle when $l=|V(D)|$ and $x_l$ dominates $x_1$. Guo (Discrete Appl Math 95 (1999) 273-277) proved that every arc of a regular $c$-partite tournament with $c\geq 3$ has a $(k-1)$-outpath for each $k\in \{3, 4, \cdots, c\}$. As a generalization, the paper proves that every arc in a regular $c$-partite tournament with $c\geq 5$ has a $(k-1)$-outpath for each $k\in \{3, 4, \cdots, |V(D)|\}$ in this article. Furthermore, using the method of path-contracting, the paper also proves the following result: Let $D$ be a regular $c$-partite tournament. If $c\geq 8$ and there are two vertices in every partite set, then each arc in $D$ is contained in a Hamilton cycle. This result gives a partial support to the conjecture posed by Volkmann and Yeo (Discrete Math 281 (2004) 267-276) that each arc of a regular multipartite tournament is contained in a Hamilton cycle.

Key wordsregular multipartite tournaments      outpath      Hamilton cycle     
Received: 02 April 2014      Published: 10 June 2018
CLC:  O157.5  
Cite this article:

GUO Qiao-ping, CUI Li-nan. Outpaths of all length of an arc in regular multipartite tournaments. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 288-294.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/288


正则多部竞赛图中任意弧的所有长度的外路

多部竞赛图$D$中弧$x_1x_2$的一条$(l-1)$-外路是指起始于$x_1x_2$的长为$l-1$的路$x_1x_2\cdots x_l$, 其中要么$x_l$与$x_1$同部, 要么$x_l$ 控制$x_1$. 特别地, 当$l=|V(D)|$且$x_l$控制$x_1$时, $x_1x_2\cdots x_lx_1$ 是一个通过弧$x_1x_2$ 的Hamilton圈. Guo (Discrete Appl. Math. 95 (1999) 273-277) 证明了一个正则$c$-部($c\geq 3$) 竞赛图中的每条弧都有一个$(k-1)$-外路, 其中$k\in\{3, 4, \cdots, c\}$. 作为一个推广, 该文证明了一个正则$c$-部($c\geq 5$) 竞赛图中的每条弧都有一个$(k-1)$-外路, 其中$k\in\{3, 4, \cdots, |V(D)|\}$. 进一步, 使用路收缩技巧, 下面一个结果也被证明: $D$是一个正则$c$-部($c\geq 8$)竞赛图, 且每个部集包含两个顶点, 则$D$的每条弧被包含在一个Hamilton 圈中. 这个结果部分地支持了Volkmann 和Yeo (Discrete Math. 281 (2004) 267-276)提出的猜想: 正则多部竞赛图的每条弧都包含在一个Hamilton 圈中.

关键词: 正则多部竞赛图,  外路,  Hamilton圈 
[1] LI Rui-juan, HAN Ting-ting. Arc-disjoint Hamiltonian cycles and paths in positive-round digraphs#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 487-492.
[2] WU Bao-feng, PANG Lin-lin, SHEN Fu-qiang. On the least signless Laplacian eigenvalue of graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 83-89.
[3] WANG Zhan-qing, WANG Li-gong, MEI Ruo-xing, ZHAI Ruo-nan, DONG Zhan-peng. Two kinds of bicyclic graphs are determined by their Laplacian spectra[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 73-82.
[4] HE Chang-xiang, LIU Shi-qiong. The star matching number and (signless) Laplacian eigenvalues[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 333-339.