Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (2): 147-158    DOI:
    
Local times of multi-parameter processes with stable components
XIONG Xian-zhu
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Let $X_1,\cdots ,X_h$ be independent $ (N,d_1,\alpha _1 ),\cdots ,(N,d_h,\alpha _h)$-stable processes respectively, where $\alpha _1, \cdots , \alpha _h $ may be different real numbers in $(0,2]$. The corresponding multi-parameter process with stable components is defined as the following $N$-parameter random field on $\mathbf{R}^d\left(d= \sum\limits_{i=1}^{h}d_{i}\right)$, $X(t)= (X_1(t),X_2(t),\cdots,X_h(t)),$ $\forall t \in \mathbf{R}_+^N$. Under the condition that $N>d,$ it is proved that there is a (jointly continuous) local time for $X(t)$. The result is peculiar to the process $X(t)$, because there is no local time under any condition for the one-parameter process with stable components.

Key wordsmulti-parameter processes with stable components      local time      jointly continuous     
Received: 13 January 2014      Published: 28 July 2018
CLC:  O211.6  
Cite this article:

XIONG Xian-zhu. Local times of multi-parameter processes with stable components. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 147-158.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I2/147


多指标稳定分量过程的局部时

设$X_1,\cdots ,X_h$分别是独立的$ (N,d_1,\alpha _1 ),\cdots ,(N,d_h,\alpha _h)$稳定过程, 其中$\alpha _1, \cdots , \alpha _h $可以是$(0,2]$中不同的数. 设$X(t)= (X_1(t),X_2(t),\cdots,X_h(t)),$ $\forall t \in \mathbf{R}_+^N$, 则称$X=\{X(t); t\in\mathbf{R}_+^N\}$为 多指标稳定分量过程. 在$N>\sum\limits_{i=1}^{h}d_{i}$的条件下, 证明了$X$存在(联合连续的)局部时, 该结果是多指标稳定分量过程所特有的, 因为单指标稳定分量过程在任何情况下都不存在局部时.

关键词: 多指标稳定分量过程,  局部时,  联合连续 
[1] SUN Xiao-xia , SHI Yin-hui. On estimations for the parameters of fractional diffusion models and their applications[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 295-305.
[2] WANG Chun-fa, CHEN Rong-da. Option pricing in Markov regime switching Levy models using Fourier-Cosine expansions[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 390-404.
[3] GAO Ping. Strong stability of $(\alpha,\beta)$-mixing sequences[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 405-412.
[4] ZHANG Jie-song, XIAO Qing-xian. Optimal reinsurance of a dependent mulit-type risk model under variance reinsurance premium principle[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 253-261.
[5] SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.
[6] FEI Shi-long. Several recurrence and transience of states for Markov chains in random environments[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 273-280.
[7] WEI Yue-song. Generalized likelihood ratio approach for identifying nonlinear structural vector autoregressive causal graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 143-152.
[8] LI Wen-han, LIU Li-xia, SUN Hong-yan. The call option pricing for the stocks with jump-diffusion process based on foreign exchange rate[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 21-29.
[9] YANG Jian-qi, ZHAO Shou-juan. Quadratic hedging problems for non-tradable assets[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 30-38.
[10] DONG Yan. The pricing of Bala options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 9-20.
[11] LI Zhi-guang, KANG Shu-gui. The pricing of geometric average Asian options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 39-49.
[12] WEI Qi-cai. Functional sample path properties for subsequence's $\boldsymbol{C}$-$\boldsymbol{R}$ increments of $k$-dimensional Brownian motion in Holder norm[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 355-366.
[13] PENG Dan, HOU Zhen-ting. Dividend payments with barrier strategy in the discrete-time interaction risk model[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 31-42.
[14] SUN Yu-dong, WANG Xiu-fen. The nonlinear variational inequality problem arising from American barrier option[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 43-54.
[15] LIU Dong-hai, PENG Dan, LIU Zai-ming. Perturbed Markov-modulated dual risk model with constant dividend barrier[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 159-170.