Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (2): 159-170    DOI:
    
Perturbed Markov-modulated dual risk model with constant dividend barrier
LIU Dong-hai1, PENG Dan1, LIU Zai-ming2
1. Department of Mathematics, Hunan University of Science and Technology, Xiangtan 411201, China
2. Department of Mathematics, Central South University, Changsha 410075, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The paper discusses a perturbed Markov-modulated dual risk model with constant dividend barrier, in which, the gain arrivals, gains sizes and expenses are influenced by a Markov process. A system of integro-differential equations for the expected total discounted dividend payments until ruin is derived. Moreover, in the two-state model, explicit results are obtained when both claim amounts are exponentially distributed and mixed exponentially distributed. Finally, some numerical examples are given.

Key wordsdual risk model      Markov-modulated      integro-differential equation      the expected total discounted dividend payments     
Received: 25 November 2013      Published: 28 July 2018
CLC:  O211.6  
Cite this article:

LIU Dong-hai, PENG Dan, LIU Zai-ming. Perturbed Markov-modulated dual risk model with constant dividend barrier. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 159-170.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I2/159


常数分红界下带扰动的马氏调制对偶风险模型

考虑常数分红界下带扰动的马尔可夫调制对偶风险模型, 其中保险公司收益到达过程、收益额的大小以及支出都受一马尔可夫过程的影响, 得到了破产前累积分红折现均值所满足的积分-微分方程及边界条件; 进一步得到了两状态下, 收益分布为指数分布和混合指数分布时累积分红折现均值的表达式, 最后给出了数值模拟实例.

关键词: 对偶风险模型,  马氏调制,  积分-微分方程,  累积分红折现均值 
[1] SUN Xiao-xia , SHI Yin-hui. On estimations for the parameters of fractional diffusion models and their applications[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 295-305.
[2] WANG Chun-fa, CHEN Rong-da. Option pricing in Markov regime switching Levy models using Fourier-Cosine expansions[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 390-404.
[3] GAO Ping. Strong stability of $(\alpha,\beta)$-mixing sequences[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 405-412.
[4] ZHANG Jie-song, XIAO Qing-xian. Optimal reinsurance of a dependent mulit-type risk model under variance reinsurance premium principle[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 253-261.
[5] SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.
[6] FEI Shi-long. Several recurrence and transience of states for Markov chains in random environments[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 273-280.
[7] WEI Yue-song. Generalized likelihood ratio approach for identifying nonlinear structural vector autoregressive causal graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 143-152.
[8] DONG Yan. The pricing of Bala options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 9-20.
[9] LI Zhi-guang, KANG Shu-gui. The pricing of geometric average Asian options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 39-49.
[10] LI Wen-han, LIU Li-xia, SUN Hong-yan. The call option pricing for the stocks with jump-diffusion process based on foreign exchange rate[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 21-29.
[11] YANG Jian-qi, ZHAO Shou-juan. Quadratic hedging problems for non-tradable assets[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 30-38.
[12] WEI Qi-cai. Functional sample path properties for subsequence's $\boldsymbol{C}$-$\boldsymbol{R}$ increments of $k$-dimensional Brownian motion in Holder norm[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 355-366.
[13] SUN Yu-dong, WANG Xiu-fen. The nonlinear variational inequality problem arising from American barrier option[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 43-54.
[14] PENG Dan, HOU Zhen-ting. Dividend payments with barrier strategy in the discrete-time interaction risk model[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 31-42.
[15] XIONG Xian-zhu. Local times of multi-parameter processes with stable components[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 147-158.