Please wait a minute...
高校应用数学学报  2014, Vol. 29 Issue (2): 211-222    
    
变系数Neumann问题正解的存在性及多解性
闫东明
浙江财经大学 数学与统计学院, 浙江杭州 310018
Existence of single and multiple positive solutions of Neumann boundary value problem with a variable coefficient
YAN Dong-ming
 School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
 全文: PDF 
摘要: 应用Dancer全局分歧理论, 研究变系数Neumann边值问题 $$ \left\{\begin{array}{ll} \ u''(t)+m^2(t)u(t)=f(t,u(t)), t\in(0,1),\\[2ex] u'(0)=0, u'(1)=0 \ \end{array} \right. $$ 一个正解及多个正解的存在性, 其中 $m\in C[0,1],f:[0,1]\times[0,\infty)\to[0,\infty)$连续. 给出了此类问题有一个正解及多个正解存在的与其相应线性问题第一个特征值有关的充分条件, 该条件中所涉及的值是最优的.
关键词: 变系数Neumann问题全局分歧正解多解性第一特征值    
Abstract: In this paper, the existence of single and multiple positive solutions of the Neumann boundary value problem $$ \left\{\begin{array}{ll} \ u''(t)+m^2(t)u(t)=f(t,u(t)), t\in(0,1),\\[2ex] u'(0)=0, u'(1)=0 \ \end{array} \right. $$ are studied. By using Dancer's global bifurcation theorem, the optimal sufficient conditions for the existence of single and multiple positive solutions of the above mentioned problem concerning the first eigenvalue of the relevant linear problem are obtained.
Key words: Neumann boundary value problem    Dancer’s global bifurcation theorem    positive solutions    multiple positive solutions    first eigenvalue
收稿日期: 2013-12-03 出版日期: 2018-07-29
CLC:  O175.8  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫东明

引用本文:

闫东明. 变系数Neumann问题正解的存在性及多解性[J]. 高校应用数学学报, 2014, 29(2): 211-222.

YAN Dong-ming. Existence of single and multiple positive solutions of Neumann boundary value problem with a variable coefficient. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 211-222.

链接本文:

http://www.zjujournals.com/amjcua/CN/        http://www.zjujournals.com/amjcua/CN/Y2014/V29/I2/211

[1] 孔祥山, 李海涛, 赵洪欣, 吕寻景. 一类分数阶微分方程积分边值问题正解的分歧性[J]. 高校应用数学学报, 2017, 32(1): 13-22.
[2] 王金华, 向红军. 一类分数阶差分方程边值问题多重正解的存在性[J]. 高校应用数学学报, 2016, 31(2): 167-175.
[3] 许超群, 李宏恩, 原三领. 一类噬菌体死亡率受到噪声干扰的随机噬菌体-细菌模型研究[J]. 高校应用数学学报, 2015, 30(3): 253-261.
[4] 宋利梅. 具$p$-Laplace算子的分数阶微分方程边值问题的正解[J]. 高校应用数学学报, 2014, 29(4): 443-452.