Please wait a minute...
高校应用数学学报  2015, Vol. 30 Issue (1): 101-108    
    
切触黎曼浸入的极小性
吴飞凡
浙江大学 数学系, 浙江杭州 310027
The minimality of contact-Riemannian immersion
WU Fei-fan
Dept. of Math., Zhejiang Univ., Hangzhou 310027, China
 全文: PDF 
摘要: 切触黎曼流形, 其殆复结构不一定是可积的, 是CR几何中伪厄尔米特流形的一般情形. 选取TWT联络作为切触黎曼流形上的联络, 在CR情形下它就是TW联络. 推广CR几何中的伪厄尔米特浸入得到切触黎曼几何中的切触黎曼浸入, 可以证明任何切触黎曼浸入一定是极小的.
关键词: 切触黎曼流形TWT联络切触黎曼浸入极小浸入    
Abstract: Contact-Riemannian manifolds, without necessarily integrable complex structures, are the generalization of pseudohermitian manifolds in CR geometry. The Tanaka-Webster-Tanno connection plays the role of Tanaka-Webster connection in the pseudohermitian case. Pseudo-hermitian immersions of CR geometry can be developed to contact-Rimannian immersions of contact Riemannian manifold, and it can be proved that any contact-Riemannian immersion is minimal.
Key words: contact-Riemannian manifold    TWT connection    contact Riemannian immersion    minimal immersion
收稿日期: 2014-11-05 出版日期: 2018-06-06
CLC:  O184  
基金资助: 国家自然科学基金(11171298)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴飞凡

引用本文:

吴飞凡. 切触黎曼浸入的极小性[J]. 高校应用数学学报, 2015, 30(1): 101-108.

WU Fei-fan. The minimality of contact-Riemannian immersion. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 101-108.

链接本文:

http://www.zjujournals.com/amjcua/CN/        http://www.zjujournals.com/amjcua/CN/Y2015/V30/I1/101

[1] 施云. 四元Heisenberg群上的链和$\mathbf{R}$-圆及其性质[J]. 高校应用数学学报, 2016, 31(1): 90-100.