Please wait a minute...
高校应用数学学报  2015, Vol. 30 Issue (1): 31-42    
    
常数分红界下两离散相依险种风险模型的分红问题
彭丹1, 侯振挺2
1. 湖南科技大学 数学与计算科学学院, 湖南湘潭 411201
2. 中南大学 数学与统计学院, 湖南长沙 410075
Dividend payments with barrier strategy in the discrete-time interaction risk model
PENG Dan1, HOU Zhen-ting2
1. Department of Mathematics, Hunan University of Science and Technology, Xiangtan 411201, China
2. Department of Mathematics, Central South University, Changsha 410075, China
 全文: PDF 
摘要: 主要研究了常数分红界下两离散相依险种风险模型的分红问题. 模型假定一个险种的主索赔以一定的概率引起另外一险种的副索赔, 且副索赔可能延迟发生, 推导了到破产前一时刻为止累积分红折现均值满足的差分方程, 并得到了特殊索赔额下累积分红折现均值的具体表达式, 最后结合实际例子进行了数值模拟.
关键词: 主索赔副索赔累积分红折现均值    
Abstract: In this paper, a discrete-time interaction risk model with delayed claims and a constant dividend barrier is considered. the interaction comes from the assumption that each main claim in one class induces a by-claim in the other class with a certain probability. The occurrences of induced claim may be delayed. A system of difference equations with certain boundary conditions for the expected present value of total dividend payments prior to ruin is derived and solved. Explicit expressions for the corresponding results are derived in a special case, numerical examples are also given.
Key words: main claim    by-claim    the expected dividend payments
收稿日期: 2014-06-12 出版日期: 2018-06-06
CLC:  O211.6  
基金资助: 国家自科天元青年基金(11426100); 湖南省自然科学青年基金(13JJ4083); 湖南省社科基金(13YBB087); 教育部人文社科青年基金(10YJC630144); 湖南省教育厅科研项目(13C318); 湖南省自科青年联合基金(2015JJ6041)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭丹
侯振挺

引用本文:

彭丹, 侯振挺. 常数分红界下两离散相依险种风险模型的分红问题[J]. 高校应用数学学报, 2015, 30(1): 31-42.

PENG Dan, HOU Zhen-ting. Dividend payments with barrier strategy in the discrete-time interaction risk model. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 31-42.

链接本文:

http://www.zjujournals.com/amjcua/CN/        http://www.zjujournals.com/amjcua/CN/Y2015/V30/I1/31

[1] 李会杰, 倪佳林, 傅可昂. 一类带投资和副索赔的二维时依风险模型破产概率的渐近估计[J]. 高校应用数学学报, 2017, 32(3): 283-294.