Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (2): 190-199    DOI: 10.3785/j.issn.1008-9209.2023.10.071
Reviews     
Research progress and prospects of remote sensing classification of urban vegetation
Qingyan MENG1,2,3,4(),Hongyu DU1,3,4,Liping WANG2,Linlin ZHANG1,2,3(),Jiahao WU1,5,Jiaqi KANG1,6
1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2.Center for Urban Governance Studies of Zhejiang Province, Hangzhou International Urbanology Research Center, Hangzhou 310000, Zhejiang, China
3.Key Laboratory of Earth Observation of Hainan Province, Hainan Aerospace Information Research Institute, Sanya 572029, Hainan, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
5.State Key Laboratory of Internet of Things for Smart City, University of Macau, Macao 999078, China
6.School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
Download: HTML   HTML (   PDF(1313KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Urban vegetation is an important part of the urban environment, and remote sensing classification of urban vegetation is an important way to monitor and analyze urban green space. By sorting the research progress of remote sensing classification of urban vegetation at home and abroad, we started from two aspects of remote sensing data sources and classification methods, and analyzed the current problems and development trends in this field, in order to provide references for urban green space research. First, the applications of optical data, light detection and ranging (LiDAR) data and ground sensing data in the remote sensing classification of urban vegetation were summarized, and the advantages and disadvantages of different data sources were analyzed in depth. Second, the characteristics of classification methods applied in the remote sensing classification of urban vegetation were summarized through the study of three classification methods, including threshold segmentation, machine learning, and deep learning. Finally, the existing problems and future development directions in the remote sensing classification of urban vegetation were proposed.



Key wordsurban vegetation      urban remote sensing      image classification     
Received: 07 October 2023      Published: 30 April 2024
CLC:  P237  
Corresponding Authors: Linlin ZHANG     E-mail: mengqy@radi.ac.cn;zhangll@aircas.ac.cn
Cite this article:

Qingyan MENG,Hongyu DU,Liping WANG,Linlin ZHANG,Jiahao WU,Jiaqi KANG. Research progress and prospects of remote sensing classification of urban vegetation. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 190-199.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.10.071     OR     https://www.zjujournals.com/agr/Y2024/V50/I2/190


城市植被遥感分类研究进展与展望

城市植被是城市环境的重要组成部分,城市植被遥感分类是对城市绿度空间监测分析的重要方式。本文通过梳理国内外城市植被遥感分类研究进展,从遥感数据源和分类方法入手,分析该领域目前面临的问题及发展趋势,以期为城市绿度空间研究提供参考。首先,概述了光学数据、激光雷达数据及地面传感数据等数据源在城市植被遥感分类领域的应用,对不同数据源的优势与不足进行了深入分析;其次,基于阈值分割、机器学习和深度学习3种分类方法的研究,总结了应用于城市植被遥感分类领域各方法的特点;最后,提出了城市植被遥感分类研究中现存问题和未来发展方向。


关键词: 城市植被,  城市遥感,  图像分类 
Fig. 1 Numbers of annual published papers of urban vegetation classification research (2001—2023)
Fig. 2 Countries of papers’ first author (A) and research directions of papers (B)

数据源

Data source

优势

Advantage

不足

Disadvantage

主要应用

Main application

光学数据

Optical data

中空间分辨率

(>10 m)

遥感数据监测时序长空间分辨率低,难以满足要求植被提取

高空间分辨率

(1~10 m)

空间分辨率满足城市植被

提取分类的要求;

空间分辨率越高,纹理特

征的作用越明显

随着空间分辨率的提高,数据

处理的难度也增大

植被提取;植被分类;树冠提取

亚米级分辨率

(<1 m)

空间分辨率满足精细化分

类的要求

获取成本较高,大多依赖机载

平台,所受限制较多

植被分类;树冠分割

激光雷达数据

LiDAR data

提供树冠形态信息;

减少城市阴影的干扰

获取成本较高;

受城市其他地物影响较大

植被分类;树冠分割

地面传感数据

Ground sensing

data

观测树木垂直结构;

从行人视角感知城市绿地

数据空间覆盖范围有限,局限在

道路周围的绿地;

光谱波段有限,缺乏红外等波段

居民感知;植被分类
Table 1 Comparisons of data sources for urban vegetation remote sensing extraction and classification
[1]   HE M W, YUAN C, ZHANG X, et al. Impacts of green-blue-grey infrastructures on high-density urban thermal environment at multiple spatial scales: a case study in Wuhan[J]. Urban Climate, 2023, 52: 101714. DOI: 10.1016/j.uclim.2023.101714
doi: 10.1016/j.uclim.2023.101714
[2]   HUANG Q Y, XU C, HAASE D, et al. Heterogeneous effects of the availability and spatial configuration of urban green spaces on their cooling effects in China[J]. Environment International, 2024, 183: 108385. DOI: 10.1016/j.envint.2023.108385
doi: 10.1016/j.envint.2023.108385
[3]   WANG M L, QIN M, XU P J, et al. Atmospheric particulate matter retention capacity of bark and leaves of urban tree species[J]. Environmental Pollution, 2024, 342: 123109. DOI: 10.1016/j.envpol.2023.123109
doi: 10.1016/j.envpol.2023.123109
[4]   REY-GOZALO G, BARRIGÓN MORILLAS J M, MONTES GONZÁLEZ D, et al. Influence of green areas on the urban sound environment[J]. Current Pollution Reports, 2023, 9(4): 746-759. DOI: 10.1007/s40726-023-00284-5
doi: 10.1007/s40726-023-00284-5
[5]   OLSZEWSKA-GUIZZO A, SIA A, FOGEL A, et al. Features of urban green spaces associated with positive emotions, mindfulness and relaxation[J]. Scientific Reports, 2022, 12(1): 20695. DOI: 10.1038/s41598-022-24637-0
doi: 10.1038/s41598-022-24637-0
[6]   孟庆岩.城市绿度空间遥感[M].北京:科学出版社,2020.
MENG Q Y. Remote Sensing of Urban Green Space[M]. Beijing: Science Press, 2020. (in Chinese)
[7]   BAI Y K, SUN G M, LI Y, et al. Comprehensively analyzing optical and polarimetric SAR features for land-use/land-cover classification and urban vegetation extraction in highly-dense urban area[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102496. DOI: 10.1016/j.jag.2021.102496
doi: 10.1016/j.jag.2021.102496
[8]   NEYNS R, CANTERS F. Mapping of urban vegetation with high-resolution remote sensing: a review[J]. Remote Sensing, 2022, 14(4): 1031. DOI: 10.3390/rs14041031
doi: 10.3390/rs14041031
[9]   SCHNEIDER A, FRIEDL M A, POTERE D. Mapping global urban areas using MODIS 500-m data: new methods and datasets based on “urban ecoregions”[J]. Remote Sensing of Environment, 2010, 114(8): 1733-1746. DOI: 10.1016/j.rse.2010.03.003
doi: 10.1016/j.rse.2010.03.003
[10]   SHAHTAHMASSEBI A R, LI C L, FAN Y F, et al. Remote sensing of urban green spaces: a review[J]. Urban Forestry & Urban Greening, 2021, 57: 126946. DOI: 10.1016/j.ufug.2020.126946
doi: 10.1016/j.ufug.2020.126946
[11]   HÖFLE B, HOLLAUS M, HAGENAUER J. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data[J]. ISPRS Journal of Photo-grammetry and Remote Sensing, 2012, 67: 134-147. DOI: 10.1016/j.isprsjprs.2011.12.003
doi: 10.1016/j.isprsjprs.2011.12.003
[12]   HORVAT D, ŽALIK B, MONGUS D. Context-dependent detection of non-linearly distributed points for vegetation classification in airborne LiDAR[J]. ISPRS Journal of Photo-grammetry and Remote Sensing, 2016, 116: 1-14. DOI: 10.1016/j.isprsjprs.2016.02.011
doi: 10.1016/j.isprsjprs.2016.02.011
[13]   YANG M X, ZHOU X L, LIU Z L, et al. A review of general methods for quantifying and estimating urban trees and biomass[J]. Forests, 2022, 13(4): 616. DOI: 10.3390/f13040616
doi: 10.3390/f13040616
[14]   杨超,邬国锋,李清泉,等.植被遥感分类方法研究进展[J].地理与地理信息科学,2018,34(4):24-32. DOI:10.3969/j.issn.1672-0504.2018.04.005
YANG C, WU G F, LI Q Q, et al. Research progress on remote sensing classification of vegetation[J]. Geography and Geo-Information Science, 2018, 34(4): 24-32. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-0504.2018.04.005
[15]   GUO J H, XU Q S, ZENG Y, et al. Nationwide urban tree canopy mapping and coverage assessment in Brazil from high-resolution remote sensing images using deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 1-15. DOI: 10.1016/j.isprsjprs.2023.02.007
doi: 10.1016/j.isprsjprs.2023.02.007
[16]   WANG W, CHENG Y, REN Z P, et al. A novel hybrid method for urban green space segmentation from high-resolution remote sensing images[J]. Remote Sensing, 2023, 15(23): 5472. DOI: 10.3390/rs15235472
doi: 10.3390/rs15235472
[17]   NININAHAZWE F, THÉAU J, MARC ANTOINE G, et al. Mapping invasive alien plant species with very high spatial resolution and multi-date satellite imagery using object-based and machine learning techniques: a comparative study[J]. GIScience & Remote Sensing, 2023, 60(1): 2190203. DOI: 10.1080/15481603.2023.2190203
doi: 10.1080/15481603.2023.2190203
[18]   WANG Y Q, HUANG H P, YANG G, et al. Ecosystem service function supply-demand evaluation of urban functional green space based on multi-source data fusion[J]. Remote Sensing, 2022, 15(1): 118. DOI: 10.3390/rs15010118
doi: 10.3390/rs15010118
[19]   KAYMAZ I, ARSLAN E S, ÖRÜCÜ Ö K, et al. Exploring the relation between urban landscape service values and different infrastructures through crowdsourced data[J]. International Journal of Sustainable Development & World Ecology, 2024.
[20]   ALAVIPANAH S K, KARIMI FIROZJAEI M, SEDIGHI A, et al. The shadow effect on surface biophysical variables derived from remote sensing: a review[J]. Land, 2022, 11(11): 2025. DOI: 10.3390/land11112025
doi: 10.3390/land11112025
[21]   YU W K, ZHANG X K, PUN M O. Cloud removal in optical remote sensing imagery using multiscale distortion-aware networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. DOI: 10.1109/lgrs.2022.3144686
doi: 10.1109/lgrs.2022.3144686
[22]   SHI Q, LIU M X, MARINONI A, et al. UGS-1m: fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework[J]. Earth System Science Data, 2023, 15(2): 555-577. DOI: 10.5194/essd-15-555-2023
doi: 10.5194/essd-15-555-2023
[23]   VAN DE VOORDE T, VLAEMINCK J, CANTERS F. Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data: a case study on Brussels[J]. Sensors, 2008, 8(6): 3880-3902. DOI: 10.3390/s8063880
doi: 10.3390/s8063880
[24]   JU Y, DRONOVA I, DELCLÒS-ALIÓ X. A 10 m resolution urban green space map for major Latin American cities from Sentinel-2 remote sensing images and OpenStreetMap[J]. Scientific Data, 2022, 9: 586. DOI: 10.1038/s41597-022-01701-y
doi: 10.1038/s41597-022-01701-y
[25]   GONG C F, YU S X, JOESTING H, et al. Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images[J]. Landscape and Urban Planning, 2013, 117: 57-65. DOI: 10.1016/j.landurbplan.2013.04.009
doi: 10.1016/j.landurbplan.2013.04.009
[26]   QIAN Y G, ZHOU W Q, NYTCH C J, et al. A new index to differentiate tree and grass based on high resolution image and object-based methods[J]. Urban Forestry & Urban Greening, 2020, 53: 126661. DOI: 10.1016/j.ufug.2020.126661
doi: 10.1016/j.ufug.2020.126661
[27]   ARDILA J P, TOLPEKIN V A, BIJKER W. Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images[C]. Proceedings of the Conference on Geographic Object-Based Image Analysis (GEOBIA), Ghent, BELGIUM, June 29—July 02, 2010. Gottingen: Copernicus Gesellschaft MBH, 2010.
[28]   CHOUDHURY M A M, MARCHEGGIANI E, DESPINI F, et al. Urban tree species identification and carbon stock mapping for urban green planning and management[J]. Forests, 2020, 11(11): 1226. DOI: 10.3390/f11111226
doi: 10.3390/f11111226
[29]   MARTINS G B, LA ROSA L E C, HAPP P N, et al. Deep learning-based tree species mapping in a highly diverse tropical urban setting[J]. Urban Forestry & Urban Greening, 2021, 64: 127241. DOI: 10.1016/j.ufug.2021.127241
doi: 10.1016/j.ufug.2021.127241
[30]   LOBO TORRES D, QUEIROZ FEITOSA R, NIGRI HAPP P, et al. Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery[J]. Sensors, 2020, 20(2): 563. DOI: 10.3390/s20020563
doi: 10.3390/s20020563
[31]   FASSNACHT F E, LATIFI H, STEREŃCZAK K, et al. Review of studies on tree species classification from remotely sensed data[J]. Remote Sensing of Environment, 2016, 186: 64-87. DOI: 10.1016/j.rse.2016.08.013
doi: 10.1016/j.rse.2016.08.013
[32]   WANG X M, MENG Q Y, ZHANG L L, et al. Evaluation of urban green space in terms of thermal environmental benefits using geographical detector analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102610. DOI: 10.1016/j.jag.2021.102610
doi: 10.1016/j.jag.2021.102610
[33]   PEERBHAY K Y, MUTANGA O, ISMAIL R. Investigating the capability of few strategically placed worldView-2 multispectral bands to discriminate forest species in KwaZulu-Natal, South Africa[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 307-316. DOI: 10.1109/jstars.2013.2262634
doi: 10.1109/jstars.2013.2262634
[34]   LEFSKY M A, COHEN W B, PARKER G G, et al. Lidar remote sensing for ecosystem studies[J]. BioScience, 2002, 52(1): 19-30. DOI: 10.1641/0006-3568(2002)052 [0019:Lrsfes]2.0.Co;2
doi: 10.1641/0006-3568(2002)052
[35]   刘东,陈斯婕,刘群,等.星载环境探测激光雷达及其关键技术[J].光学学报,2022,42(17):1701001. DOI:10.3788/aos202242.1701001
LIU D, CHEN S J, LIU Q, et al. Spaceborne environmental detection LiDAR and its key techniques[J].Acta Optica Sinica, 2022, 42(17): 1701001. (in Chinese with English abstract)
doi: 10.3788/aos202242.1701001
[36]   DEGERICKX J, HERMY M, SOMERS B. Mapping functional urban green types using high resolution remote sensing data[J]. Sustainability, 2020, 12(5): 2144. DOI: 10.3390/su12052144
doi: 10.3390/su12052144
[37]   BAINES O, WILKES P, DISNEY M. Quantifying urban forest structure with open-access remote sensing data sets[J]. Urban Forestry & Urban Greening, 2020, 50: 126653. DOI: 10.1016/j.ufug.2020.126653
doi: 10.1016/j.ufug.2020.126653
[38]   LIU L X, COOPS N C, AVEN N W, et al. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data[J]. Remote Sensing of Environment, 2017, 200: 170-182. DOI: 10.1016/j.rse.2017.08.010
doi: 10.1016/j.rse.2017.08.010
[39]   MACFADEN S W, O’NEIL-DUNNE J P M, ROYAR A R, et al. High-resolution tree canopy mapping for New York City using LiDAR and object-based image analysis[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063567. DOI: 10.1117/1.JRS.6.063567
doi: 10.1117/1.JRS.6.063567
[40]   WANG K P, WANG T J, LIU X H. A review: individual tree species classification using integrated airborne LiDAR and optical imagery with a focus on the urban environment[J]. Forests, 2018, 10(1): 1. DOI: 10.3390/f10010001
doi: 10.3390/f10010001
[41]   TOOKE T R, COOPS N C, GOODWIN N R, et al. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications[J]. Remote Sensing of Environ-ment, 2009, 113(2): 398-407. DOI: 10.1016/j.rse.2008.10.005
doi: 10.1016/j.rse.2008.10.005
[42]   CIESIELSKI M, STERENCZAK K. Accuracy of determining specific parameters of the urban forest using remote sensing[J]. iForest-Biogeosciences and Forestry, 2019, 12(6): 498-510. DOI: 10.3832/ifor3024-012
doi: 10.3832/ifor3024-012
[43]   LESLIE E, SUGIYAMA T, IERODIACONOU D, et al. Perceived and objectively measured greenness of neighbour-hoods: Are they measuring the same thing?[J]. Landscape and Urban Planning, 2010, 95(1/2): 28-33. DOI: 10.1016/j.landurbplan.2009.11.002
doi: 10.1016/j.landurbplan.2009.11.002
[44]   BILJECKI F, ITO K. Street view imagery in urban analytics and GIS: a review[J]. Landscape and Urban Planning, 2021, 215: 104217. DOI: 10.1016/j.landurbplan.2021.104217
doi: 10.1016/j.landurbplan.2021.104217
[45]   GONG F Y, ZENG Z C, ZHANG F, et al. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment[J]. Building and Environment, 2018, 134: 155-167. DOI: 10.1016/j.buildenv.2018.02.042
doi: 10.1016/j.buildenv.2018.02.042
[46]   LU Y Z, FERRANTI E J S, CHAPMAN L, et al. Assessing urban greenery by harvesting street view data: a review[J]. Urban Forestry & Urban Greening, 2023, 83: 127917. DOI: 10.1016/j.ufug.2023.127917
doi: 10.1016/j.ufug.2023.127917
[47]   HELBICH M, YAO Y, LIU Y, et al. Using deep learning to examine street view green and blue spaces and their associa-tions with geriatric depression in Beijing, China[J]. Environment International, 2019, 126: 107-117. DOI: 10.1016/j.envint.2019.02.013
doi: 10.1016/j.envint.2019.02.013
[48]   LI X J, RATTI C, SEIFERLING I. Quantifying the shade provision of street trees in urban landscape: a case study in Boston, USA, using Google street view[J]. Landscape and Urban Planning, 2018, 169: 81-91. DOI: 10.1016/j.landurbplan.2017.08.011
doi: 10.1016/j.landurbplan.2017.08.011
[49]   CHOI K, LIM W, CHANG B, et al. An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 165-180. DOI: 10.1016/j.isprsjprs.2022.06.004
doi: 10.1016/j.isprsjprs.2022.06.004
[50]   CAPECCHI I, BORGHINI T, BERNETTI I. Automated urban tree survey using remote sensing data, Google street view images, and plant species recognition apps[J]. European Journal of Remote Sensing, 2023, 56(1): 2162441. DOI: 10.1080/22797254.2022.2162441
doi: 10.1080/22797254.2022.2162441
[51]   靳紫含,赵安周,相恺政,等.基于GEE的关中平原城市群植被时空演变及影响因素[J].水土保持通报,2023,43(2):164-172. DOI:10.13961/j.cnki.stbctb.2023.02.020
JIN Z H, ZHAO A Z, XIANG K Z, et al. Temporal and spatial evolution and driving factors of vegetation index in Guanzhong Plain urban agglomeration based on GEE[J]. Bulletin of Soil and Water Conservation, 2023, 43(2): 164-172. (in Chinese with English abstract)
doi: 10.13961/j.cnki.stbctb.2023.02.020
[52]   SHISHIR S, TSUYUZAKI S. Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization[J]. Environmental Monitoring and Assessment, 2018, 190(6): 342. DOI: 10.1007/s10661-018-6714-3
doi: 10.1007/s10661-018-6714-3
[53]   GASCON M, CIRACH M, MARTÍNEZ D, et al. Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona City[J]. Urban Forestry & Urban Greening, 2016, 19: 88-94. DOI: 10.1016/j.ufug.2016.07.001
doi: 10.1016/j.ufug.2016.07.001
[54]   PETTORELLI N, VIK J O, MYSTERUD A, et al. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 2005, 20(9): 503-510. DOI: 10.1016/j.tree.2005.05.011
doi: 10.1016/j.tree.2005.05.011
[55]   张杰夫.广州市城市绿地提取方法研究[J].广东农业科学,2011,38(11):180-181, 205. DOI:10.16768/j.issn.1004-874x.2011.11.013
ZHANG J F. Study on extraction method of urban green space in Guangzhou[J]. Guangdong Agricultural Sciences, 2011, 38(11): 180-181, 205. (in Chinese)
doi: 10.16768/j.issn.1004-874x.2011.11.013
[56]   汪雪淼,孟庆岩,赵少华,等.GF-2在城市绿地分类及景观格局度量中的应用[J].地球信息科学学报,2020,22(10):1971-1982. DOI:10.12082/dqxxkx.2020.200122
WANG X M, MENG Q Y, ZHAO S H, et al. Urban green space classification and landscape pattern measurement based on GF-2 image[J]. Journal of Geo-Information Science, 2020, 22(10): 1971-1982. (in Chinese with English abstract)
doi: 10.12082/dqxxkx.2020.200122
[57]   HE B, HUANG D, KONG B, et al. Spatial variations in vegetation greening in 439 Chinese cities from 2001 to 2020 based on moderate resolution imaging spectroradiometer enhanced vegetation index data[J]. Frontiers in Ecology and Evolution, 2022, 10: 859542. DOI: 10.3389/fevo.2022.859542
doi: 10.3389/fevo.2022.859542
[58]   MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: a review[J]. ISPRS Journal of Photo-grammetry and Remote Sensing, 2011, 66(3): 247-259. DOI: 10.1016/j.isprsjprs.2010.11.001
doi: 10.1016/j.isprsjprs.2010.11.001
[59]   张友静,高云霄,黄浩,等.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006(2):191-196. DOI:10.11834/jrs.20060229
ZHANG Y J, GAO Y X, HUANG H, et al. Research on remote sensing classification of urban vegetation species based on SVM decision-making tree[J]. National Remote Sensing Bulletin, 2006(2): 191-196. (in Chinese with English abstract)
doi: 10.11834/jrs.20060229
[60]   LI D, KE Y H, GONG H L, et al. Object-based urban tree species classification using bi-temporal WorldView-2 and WorldView-3 images[J]. Remote Sensing, 2015, 7(12): 16917-16937. DOI: 10.3390/rs71215861
doi: 10.3390/rs71215861
[61]   KRANJČIĆ N, MEDAK D, ŽUPAN R, et al. Support vector machine accuracy assessment for extracting green urban areas in towns[J]. Remote Sensing, 2019, 11(6): 655. DOI: 10.3390/rs11060655
doi: 10.3390/rs11060655
[62]   HOANG N D, TRAN X L. Remote sensing-based urban green space detection using marine predators algorithm optimized machine learning approach[J]. Mathematical Problems in Engineering, 2021, 2021: 5586913. DOI: 10.1155/2021/5586913
doi: 10.1155/2021/5586913
[63]   潘琛,杜培军,张海荣.决策树分类法及其在遥感图像处理中的应用[J].测绘科学,2008,33(1):208-211. DOI:10.3771/j.issn.1009-2307.2008.01.065
PAN C, DU P J, ZHANG H R. Decision tree classification and its application in processing of remote sensing images[J]. Science of Surveying and Mapping, 2008, 33(1): 208-211. (in Chinese with English abstract)
doi: 10.3771/j.issn.1009-2307.2008.01.065
[64]   陈利,林辉,孙华.基于WorldView-2影像城市绿地信息提取研究[J].西北林学院学报,2014,29(1):155-160. DOI:10.3969/j.issn.1001-7461.2014.01.31
CHEN L, LIN H, SUN H. WorldView-2 images based urban green space information extraction[J]. Journal of Northwest Forestry University, 2014, 29(1): 155-160. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7461.2014.01.31
[65]   BELGIU M, DRĂGUŢ L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. DOI: 10.1016/j.isprsjprs.2016.01.011
doi: 10.1016/j.isprsjprs.2016.01.011
[66]   PUISSANT A, ROUGIER S, STUMPF A. Object-oriented mapping of urban trees using random forest classifiers[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 235-245. DOI: 10.1016/j.jag.2013.07.002
doi: 10.1016/j.jag.2013.07.002
[67]   KRANJČIĆ N, MEDAK D, ŽUPAN R, et al. Machine learning methods for classification of the green infrastructure in city areas[J]. ISPRS International Journal of Geo-Information, 2019, 8(10): 463. DOI: 10.3390/ijgi8100463
doi: 10.3390/ijgi8100463
[68]   GAŠPAROVIĆ M, DOBRINIĆ D. Comparative assessment of machine learning methods for urban vegetation mapping using multitemporal Sentinel-1 imagery[J]. Remote Sensing, 2020, 12(12): 1952. DOI: 10.3390/rs12121952
doi: 10.3390/rs12121952
[69]   DU Z R, YANG J Y, OU C, et al. Smallholder crop area mapped with a semantic segmentation deep learning method[J]. Remote Sensing, 2019, 11(7): 888. DOI: 10.3390/rs11070888
doi: 10.3390/rs11070888
[70]   徐知宇,周艺,王世新,等.面向GF-2遥感影像的U-Net城市绿地分类[J].中国图象图形学报,2021,26(3):700-713. DOI:10.11834/jig.200052
XU Z Y, ZHOU Y, WANG S X, et al. U-Net for urban green space classification in Gaofen-2 remote sensing images[J]. Journal of Image and Graphics, 2021, 26(3): 700-713. (in Chinese with English abstract)
doi: 10.11834/jig.200052
[71]   MEN G Q, HE G J, WANG G Z. Concatenated residual attention U-Net for semantic segmentation of urban green space[J]. Forests, 2021, 12(11): 1441. DOI: 10.3390/f12111441
doi: 10.3390/f12111441
[72]   LIU M X, LI J L, LI Z T, et al. A deep learning method for fined-grained urban green space mapping[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 17—22, 2022. Kuala Lumpur: IEEE, 2022.
[73]   CHENG Y, WANG W, REN Z P, et al. Multi-scale feature fusion and transformer network for urban green space segmentation from high-resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103514. DOI: 10.1016/j.jag.2023.103514
doi: 10.1016/j.jag.2023.103514
[74]   KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24-49. DOI: 10.1016/j.isprsjprs.2020.12.010
doi: 10.1016/j.isprsjprs.2020.12.010
[75]   WANG D, ZHANG Q M, XU Y F, et al. Advancing plain vision transformer toward remote sensing foundation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5607315. DOI: 10.1109/TGRS.2022.3222818
doi: 10.1109/TGRS.2022.3222818
No related articles found!