Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 35-41    DOI: 10.3785/j.issn.1008-9209.2023.02.221
Biological Sciences & Biotechnologies     
Screening of small molecule inhibitors targeting DNA polymerase η
Jiajia CAO(),Shumai YE,Ye ZHAO()
College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(2598KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The repair of DNA damage and maintenance of genomic stability are essential for the normal growth and adverse defense of plants and animals. In view of the genomic instability caused by the misincorporation of DNA polymerase, this study took DNA polymerase η as the research object and screened its possible small molecule inhibitors by computational simulated molecular docking and detected their enzyme kinetic parameters. The results showed that deoxyadenosine triphosphate (dATP) had an inhibitory effect on the activity of DNA polymerase η, resulting in a relative extension efficiency of 36% to 42%. Simulated molecular docking and in vitro experimental results showed that cyclic GMP-AMP (cGAMP) had a lower binding energy (with an affinity of -35.1 kJ/mol) than dATP (with an affinity of -26.7 kJ/mol) to DNA polymerase η. Enzyme kinetic experiments also showed that cGAMP had a stronger inhibitory ability than dATP and achieved the maximum effect at the concentration of 0.5 mmol/L (with a relative extension efficiency of 13%). Therefore, a potential small molecule inhibitor targeting DNA polymerase η was screened out in this study. At the same time, in view of the tolerance to antitumor drug (DNA damage agent) caused by high expression of this protein, these results provide a basis for the development of new drugs.



Key wordsrepair of DNA damage      DNA polymerase      enzyme kinetics      computational biology      cyclic GMP-AMP (cGAMP)     
Received: 22 February 2023      Published: 01 March 2024
CLC:  Q513  
Corresponding Authors: Ye ZHAO     E-mail: 22016014@zju.edu.cn;yezhao@zju.edu.cn
Cite this article:

Jiajia CAO,Shumai YE,Ye ZHAO. Screening of small molecule inhibitors targeting DNA polymerase η. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 35-41.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.02.221     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/35


DNA聚合酶η小分子抑制剂筛选

DNA损伤修复以及基因组稳定性维持对于动植物正常生长和防御逆境至关重要。针对DNA聚合酶错误掺入导致的基因组不稳定性,本研究以DNA聚合酶η为研究对象,通过计算分子模拟对接的方式,对其可能的小分子抑制剂进行筛选,并对其酶动力学参数进行测定。结果显示:脱氧腺苷三磷酸(deoxyadenosine triphosphate, dATP)对DNA聚合酶η的活性具有抑制效果,使其延伸的相对效率为36%~42%。分子模拟对接和体外实验结果表明,相较于dATP(亲和力为-26.7 kJ/mol),环鸟苷酸-腺苷酸(cyclic GMP-AMP, cGAMP)与DNA聚合酶η具有更低的结合能(亲和力为-35.1 kJ/mol)。酶动力学参数测定结果也表明,相较于dATP,cGAMP具有更强的抑制能力且在浓度为0.5 mmol/L时达到最强(相对延伸效率为13%)。因此,本研究筛选获得了针对DNA聚合酶η的一种潜在的小分子抑制剂。同时,鉴于该蛋白质高表达导致细胞对抗肿瘤药物(DNA损伤剂)的耐受性,这为新型药物的开发提供了依据。


关键词: DNA损伤修复,  DNA聚合酶,  酶动力学,  计算生物学,  环鸟苷酸-腺苷酸 
Fig. 1 Simulated molecular docking results of dATP (A) and cGAMP (B) small molecules with DNA polymerase ηDNA polymerase η (blue), DNA molecule (pink), Trp297 (green), and dATP or cGAMP small molecules (yellow) are highlighted in different colors, respectively.

小分子

Small molecule

亲和力

Affinity/

(kJ/mol)

结构偏差

Structural deviation

RMSD l. b.RMSD u. b.
dATP_1-26.700
dATP_2-26.31.5092.414
dATP_3-26.32.6144.567
cGAMP_1-35.100
cGAMP_2-34.73.05310.525
cGAMP_3-34.34.1855.330

2-脱氧鸟苷

3-(磷酸二氢酯)

2-deoxyguanosine

3-(dihydrogen

phosphate)

-23.400

2-脱氧胞苷

2-deoxycytidine

-22.100
Table 1 Simulated docking results of dATP and cGAMP small molecules
Fig. 2 Molecular structure of cGAMP
Fig. 3 Separation and purification of DNA polymerase ηA. Diagram of protein purification by Ni column affinity chromatography; B. Diagram of protein purification by desalt column; C. Diagram of protein purification by heparin column; D. Protein purity checked by SDS-PAGE (M: Protein marker). The black arrow indicates the target protein of DNA polymerase η.

抑制剂

Inhibitor

浓度

Concentration/(mmol/L)

米氏常数

Km/(μmol/L)

反应转化数

kcat/min-1

延伸效率

Kpol/(L/(min?μmol))

相对延伸效率

Relative Kpol/%

对照 CK05.70±0.43b19.36±0.44a3.40100
dATP0.16.41±0.73b7.92±0.25e1.2436
dATP0.511.37±0.46a16.20±0.24b1.4242
dATP1.010.96±0.99a14.19±0.47c1.2938
cGAMP0.14.83±0.38b8.35±0.18e1.7351
cGAMP0.59.04±0.64a4.07±0.10f0.4513
cGAMP1.09.95±0.81a9.89±0.27d0.9929
Table 2 Kinetic parameters of DNA polymerase η (G-dCTP pairing)
[1]   CHANG C, LEE L C, GAO Y. In crystallo observation of three metal ion promoted DNA polymerase misincorporation[J]. Nature Communications, 2022, 13: 2346. DOI: 10.1038/s41467-022-30005-3
doi: 10.1038/s41467-022-30005-3
[2]   SILVERSTEIN T D, JAIN R, JOHNSON R E, et al. Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η [J]. Structure, 2010, 18(11): 1463-1470. DOI: 10.1016/j.str.2010.08.019
doi: 10.1016/j.str.2010.08.019
[3]   SILVERSTEIN T D, JOHNSON R E, JAIN R, et al. Structural basis for the suppression of skin cancers by DNA polymerase η [J]. Nature, 2010, 465(7301): 1039-1043. DOI: 10.1038/nature09104
doi: 10.1038/nature09104
[4]   REBUCCI M, MICHIELS C. Molecular aspects of cancer cell resistance to chemotherapy[J]. Biochemical Pharmacology, 2013, 85(9): 1219-1226. DOI: 10.1016/j.bcp.2013.02.017
doi: 10.1016/j.bcp.2013.02.017
[5]   HUH H C, LEE S Y, LEE S K, et al. Capsaicin induces apoptosis of cisplatin-resistant stomach cancer cells by causing degradation of cisplatin-inducible Aurora-A protein[J]. Nutrition and Cancer, 2011, 63(7): 1095-1103. DOI: 10.1080/01635581.2011.607548
doi: 10.1080/01635581.2011.607548
[6]   ABDULLAH L N, CHOW E K H. Mechanisms of chemore-sistance in cancer stem cells[J]. Clinical and Translational Medicine, 2013, 2(1): 3. DOI: 10.1186/2001-1326-2-3
doi: 10.1186/2001-1326-2-3
[7]   CEPPI P, NOVELLO S, CAMBIERI A, et al. Polymerase η mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy[J]. Clinical Cancer Research, 2009, 15(3): 1039-1045. DOI: 10.1158/1078-0432.CCR-08-1227
doi: 10.1158/1078-0432.CCR-08-1227
[8]   ZAFAR M K, EOFF R L. Translesion DNA synthesis in cancer: molecular mechanisms and therapeutic opportunities[J]. Chemical Research in Toxicology, 2017, 30(11): 1942-1955. DOI: 10.1021/acs.chemrestox.7b00157
doi: 10.1021/acs.chemrestox.7b00157
[9]   XIE K, DOLES J, HEMANN M T, et al. Error-prone translesion synthesis mediates acquired chemoresistance[J]. PNAS, 2010, 107(48): 20792-20797. DOI: 10.1073/pnas.1011412107
doi: 10.1073/pnas.1011412107
[10]   SRIVASTAVA A K, HAN C H, ZHAO R, et al. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells[J]. PNAS, 2015, 112(14): 4411-4416. DOI: 10.1073/pnas.1421365112
doi: 10.1073/pnas.1421365112
[11]   HENTOSH P, BENJAMIN T, HALL L, et al. Xeroderma pigmentosum variant: complementary molecular approaches to detect a 13 base pair deletion in the DNA polymerase eta gene[J]. Experimental and Molecular Pathology, 2011, 91(2): 528-533. DOI: 10.1016/j.yexmp.2011.05.004
doi: 10.1016/j.yexmp.2011.05.004
[12]   BIERTÜMPFEL C, ZHAO Y, KONDO Y, et al. Structure and mechanism of human DNA polymerase η [J]. Nature, 2010, 465(7301): 1044-1048. DOI: 10.1038/nature09196
doi: 10.1038/nature09196
[13]   JUNG Y S, QIAN Y J, CHEN X B. DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation[J]. DNA Repair, 2012, 11(2): 177-184. DOI: 10.1016/j.dnarep.2011.10.017
doi: 10.1016/j.dnarep.2011.10.017
[14]   HUANG H F, ZHU L M, REID B R, et al. Solution structure of a cisplatin-induced DNA interstrand cross-link[J]. Science, 1995, 270(5243): 1842-1845.
[15]   ZHAO Y, BIERTÜMPFEL C, GREGORY M T, et al. Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin[J]. PNAS, 2012, 109(19): 7269-7274. DOI: 10.1073/pnas.1202681109
doi: 10.1073/pnas.1202681109
[16]   ZHOU W D, CHEN Y W, LIU X Y, et al. Expression of DNA translesion synthesis polymerase η in head and neck squamous cell cancer predicts resistance to gemcitabine and cisplatin-based chemotherapy[J]. PLoS ONE, 2013, 8(12): e83978. DOI: 10.1371/journal.pone.0083978
doi: 10.1371/journal.pone.0083978
[17]   KURASHIMA K, SEKIMOTO T, ODA T, et al. Polη, a Y-family translesion synthesis polymerase, promotes cellular tolerance of Myc-induced replication stress[J]. Journal of Cell Science, 2018, 131(12): jcs212183. DOI: 10.1242/jcs.212183
doi: 10.1242/jcs.212183
[18]   SALUM L B, POLIKARPOV I, ANDRICOPULO A D. Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity[J]. Journal of Chemical Information and Modeling, 2008, 48(11): 2243-2253. DOI: 10.1021/ci8002182
doi: 10.1021/ci8002182
[19]   LI T, CHEN Z J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. The Journal of Experimental Medicine, 2018, 215(5): 1287-1299. DOI: 10.1084/jem.20180139
doi: 10.1084/jem.20180139
[20]   ZAFAR M K, MADDUKURI L, KETKAR A, et al. A small-molecule inhibitor of human DNA polymerase η potentiates the effects of cisplatin in tumor cells[J]. Biochemistry, 2018, 57(7): 1262-1273. DOI: 10.1021/acs.biochem.7b01176
doi: 10.1021/acs.biochem.7b01176
[21]   BARLOW J H, FARYABI R B, CALLÉN E, et al. Iden-tification of early replicating fragile sites that contribute to genome instability[J]. Cell, 2013, 152(3): 620-632. DOI: 10.1016/j.cell.2013.01.006
doi: 10.1016/j.cell.2013.01.006
[22]   JACKSON S P, BARTEK J. The DNA-damage response in human biology and disease[J]. Nature, 2009, 461(7267): 1071-1078. DOI: 10.1038/nature08467
doi: 10.1038/nature08467
No related articles found!