Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (2): 163-171    DOI: 10.3785/j.issn.1008-9209.2021.09.021
Plant protection     
Establishment of a model for the occurrence and prediction of bayberry decline disease
Jinyan LUO1(),Xiliang ZHENG2,Xingjiang QI2,Shuwen ZHANG2,Zheping YU2,Haiying REN2()
1.Shanghai Agricultural Technology Extension & Service Center, Shanghai 201103, China
2.Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Download: HTML   HTML (   PDF(862KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to develop the key prevention and control technologies of bayberry decline disease, and grasp the regularity of the disease, one model of disease prediction and forecasting is needed to be established. In this study, orchards with bayberry decline disease were selected in nine locations of Zhejiang Province from 2018 to 2020, and the diseased trees were randomly selected. This study investigated the disease index, measured the nutrient elements of soil and leaves, vegetative growth parameters and fruit quality parameters. The results showed that the disease index of bayberry decline disease was significantly correlated with the available boron, available phosphorus, and available potassium contents of soil, and zinc, potassium, manganese, and boron contents of leaves, and twig length, twig thickness, leaf length, leaf width of vegetative growth parameters, and the mass of single fruit, titratable acid, soluble solid and vitamin C contents of fruits. The twig length and leaf width, which are easy to measure, were selected to fit with the disease index. SPSS software was used for data analysis, and the prediction model of bayberry decline disease was successfully established. Finally, we get the prediction equation of bayberry decline disease of Y=-0.058X1-5.255X2+165.35 (R2=0.64, P=0.02), then we randomly chose three orchard samples for accuracy detection, and found the prediction precision rates were all more than 90%. The establishment of this model lays a foundation for monitoring forecasting and prevention of bayberry decline disease.



Key wordsbayberry decline disease      disease index      soil physical and chemical properties      leaf nutrient element      vegetative growth      fruit quality     
Received: 02 September 2021      Published: 29 April 2022
CLC:  S 431.192  
Corresponding Authors: Haiying REN     E-mail: toyanzi@126.com;renhy@zaas.ac.cn
Cite this article:

Jinyan LUO,Xiliang ZHENG,Xingjiang QI,Shuwen ZHANG,Zheping YU,Haiying REN. Establishment of a model for the occurrence and prediction of bayberry decline disease. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 163-171.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.09.021     OR     https://www.zjujournals.com/agr/Y2022/V48/I2/163


杨梅衰弱病发生测报模型的建立

为开发杨梅衰弱病的关键防控技术,掌握杨梅衰弱病发生规律,迫切需要建立对该病的发生测报模型。本研究于2018—2020年在浙江省9地各选择一个衰弱病发生较轻的杨梅果园,随机选取病树,进行病情级数调查以及土壤和叶片营养元素、营养生长和果实品质参数测定。结果发现:杨梅衰弱病的病情指数与病树周围土壤有效硼、有效磷、速效钾含量,叶片中的锌、钾、锰、硼含量,营养生长的梢长、梢粗、叶长、叶宽,果实中可滴定酸含量、单果质量、可溶性固形物含量、维生素C含量等因子之间具有较显著相关性。选取较容易测量的梢长和叶宽与病情指数进行拟合,利用SPSS软件进行数据分析,成功建立了杨梅衰弱病的发生测报模型,最终得到杨梅衰弱病的预测预报方程Y=-0.058X1-5.255X2+165.35(R2=0.64,P=0.02)。随机选择3个果园样本进行准确率检测,得到预测模型的准确率均大于90%。该测报模型的建立为杨梅衰弱病的测报及防控奠定了一定的基础。


关键词: 杨梅衰弱病,  病情指数,  土壤理化性质,  叶片营养元素,  营养生长,  果实品质 
地点 Address病情指数 Disease index
上虞 Shangyu43.38
兰溪 Lanxi39.11
仙居 Xianju14.94
天台 Tiantai29.16
定海 Dinghai30.58
临海 Linhai25.60
泰顺 Taishun22.04
青田 Qingtian22.04
文成 Wencheng24.18
Table 1 Investigation of bayberry decline disease

地点

Address

pH

有机质

Organic

matter/%

碱解氮

Alkali-hydrolyzable

N/(mg/kg)

有效磷

Available P/

(mg/kg)

速效钾

Available K/

(mg/kg)

交换性钙

Exchangeable Ca/

(mg/kg)

交换性镁

Exchangeable Mg/(mg/kg)

上虞 Shangyu4.52±0.35c2.63±0.01e90.27±4.51c25.76±1.56a185.50±9.47a494.18±25.22c33.09±1.63c
天台 Tiantai4.92±0.46b3.19±0.01d95.88±5.32b23.20±1.21a178.18±8.23a776.52±36.12b41.02±2.01b
泰顺 Taishun5.19±0.52a5.33±0.02a150.12±9.82a11.55±0.68e122.47±6.46d780.29±36.56b46.82±2.34a
定海 Dinghai4.19±0.21d2.79±0.01d90.27±1.65c17.16±0.98c163.68±8.36b303.96±15.47f28.96±1.23e
临海 Linhai4.38±0.22d2.83±0.01d95.88±4.65b16.68±0.92c110.66±6.33e320.23±16.21f30.82±1.52d
仙居 Xianju4.48±0.32c3.14±0.01d97.76±8.89b9.48±0.52e87.87±4.69f394.56±20.98e31.04±1.23d
兰溪 Lanxi4.20±0.15d2.93±0.01d101.95±7.11b21.19±1.26b167.45±8.85b470.33±25.34d28.68±1.36e
文成 Wencheng4.23±0.26d3.81±0.01c102.91±8.21b18.84±0.96c131.33±6.35c740.52±35.65b34.97±1.65c
青田 Qingtian4.91±0.36b4.23±0.01b135.17±8.22a14.18±0.63d124.06±6.47d857.79±42.16a39.72±1.78b

相关系数

Coefficient of

correlation

-0.384 941-0.728 040*-0.658 2340.878 669*0.845 196*-0.326 363-0.451 887

地点

Address

有效硫

Available S/

(mg/kg)

有效锌

Available Zn/

(mg/kg)

有效铜

Available Cu/

(mg/kg)

有效铁

Available Fe/

(mg/kg)

有效锰

Available Mn/

(mg/kg)

有效硼

Available B/

(mg/kg)

上虞 Shangyu25.71±1.21c3.68±0.01d0.60±0.01c37.34±1.12d57.07±2.32c0.57±0.01c
天台 Tiantai25.72±1.06c6.24±0.03b0.71±0.01b37.44±1.15d79.45±3.67b0.59±0.01bc
泰顺 Taishun29.73±1.45ab8.18±0.04a1.20±0.01a47.45±2.34c100.31±5.89a0.77±0.02a
定海 Dinghai24.22±1.20c3.24±0.01d0.51±0.01c38.11±1.56d44.05±2.29d0.60±0.01b
临海 Linhai27.71±1.36b3.30±0.01d0.55±0.01c45.79±2.36c70.46±3.64bc0.62±0.01b
仙居 Xianju28.99±1.52b4.00±0.02c0.71±0.03b45.44±2.59c98.34±4.78a0.71±0.02a
兰溪 Lanxi26.11±1.28bc4.05±0.02c0.56±0.10c41.02±2.01cd60.64±3.03c0.60±0.01b
文成 Wencheng33.65±1.10a4.10±0.02c0.67±0.01b55.08±2.68b58.98±2.75c0.63±0.02b
青田 Qingtian37.29±1.45a5.72±0.02b0.80±0.04b62.11±3.23a77.56±3.34b0.66±0.01b

相关系数

Coefficient of

correlation

-0.786 618*-0.418 414-0.672 269*-0.736 408*-0.728 040*-0.915 966**
Table 2 Correlations between soil nutrient contents and disease indexes of the weak bayberry
地点 AddressN/%P/%K/%Ca/(g/kg)Mg/(g/kg)S/(g/kg)
上虞 Shangyu1.28±0.01a0.15±0.00b0.55±0.01a9.43±0.01c1.10±0.04b2.35±0.15c
天台 Tiantai1.25±0.01a0.15±0.00b0.52±0.01ab10.50±0.51b0.99±0.01bc2.59±0.17b
泰顺 Taishun1.23±0.00a0.17±0.00b0.50±0.01b10.60±0.26b0.88±0.01c2.62±0.01b
定海 Dinghai1.25±0.00a0.14±0.00bc0.54±0.01a8.53±0.12d1.22±0.06a2.24±0.01c
临海 Linhai1.24±0.00a0.14±0.00bc0.49±0.01bc9.49±0.35c1.12±0.05b2.78±0.01a
仙居 Xianju1.22±0.01ab0.15±0.00b0.44±0.01c10.10±0.45b0.97±0.02c2.84±0.02a
兰溪 Lanxi1.23±0.00ab0.13±0.00c0.54±0.01a10.20±0.46b1.22±0.04a2.19±0.02d
文成 Wencheng1.12±0.00b0.14±0.00bc0.51±0.01ab10.60±0.42b1.20±0.05a2.30±0.02c
青田 Qingtian1.09±0.01b0.20±0.01a0.48±0.01c12.00±0.63a1.06±0.05b2.63±0.01b

相关系数

Coefficient of correlation

0.746 842*-0.528 3810.932 773**-0.567 2270.638 655-0.728 040*
地点 AddressZn/(mg/kg)Cu/(mg/kg)Fe/(mg/kg)Mn/(g/kg)B/(mg/kg)
上虞 Shangyu27.58±1.32a2.14±0.10b64.10±3.21f2.14±0.12d41.95±2.12e
天台 Tiantai25.60±1.25b2.21±0.09a68.06±3.15e2.23±0.12d45.76±2.13d
泰顺 Taishun23.30±1.11c2.28±0.08a72.38±3.43d2.43±0.11c48.03±2.10c
定海 Dinghai26.56±1.23b2.30±0.12a69.28±3.41e2.10±0.13d41.86±2.01e
临海 Linhai22.85±1.14d2.14±0.09b75.62±3.26c2.50±0.11b45.67±2.22d
仙居 Xianju16.10±1.31e1.92±0.01c78.12±3.62b2.86±0.14a50.08±2.53b
兰溪 Lanxi26.78±1.30b2.14±0.11b72.60±3.89d2.13±0.11d47.01±2.23c
文成 Wencheng23.62±1.12c2.11±0.08b78.12±3.38b2.42±0.12c48.29±2.41c
青田 Qingtian22.18±1.02d1.76±0.02d81.70±3.67a2.50±0.12b54.72±2.23a

相关系数

Coefficient of correlation

0.937 247**0.451 101-0.722 689*-0.852 941**-0.794 986*
Table 3 Correlations between leaf nutrient contents and disease indexes of the weak bayberry

地点

Address

梢长

Twig length/cm

梢粗

Twig thickness/mm

叶长

Leaf length/mm

叶宽

Leaf width/mm

上虞 Shangyu12.30±0.26d2.60±0.13c75.49±3.25d24.20±1.21b
天台 Tiantai14.47±0.65d2.70±0.13b78.48±3.42c25.55±1.32b
泰顺 Taishun18.72±0.87c3.02±0.15a90.87±4.15a27.27±1.36a
定海 Dinghai13.38±0.63d2.65±0.13c76.59±3.28cd24.36±1.23b
临海 Linhai15.00±0.74d2.84±0.12b84.15±4.21b25.84±1.32b
仙居 Xianju27.19±1.36a3.12±0.02a84.84±4.12ab28.04±1.42a
兰溪 Lanxi13.18±0.65d2.61±0.13c82.36±4.12b25.13±1.21b
文成 Wencheng14.13±0.78d2.76±0.13b78.88±3.78c25.68±1.23b
青田 Qingtian23.03±1.12b3.09±0.12a91.71±4.12a27.65±1.31a

相关系数

Coefficient of correlation

-0.945 615**-0.979 088**-0.811 723**-0.962 351**

地点

Address

叶厚

Leaf thickness/mm

光合速率

Photosynthetic rate/(mg/dm2)

叶绿素含量(SPAD)

Chlorophyll content (SPAD)

上虞 Shangyu3.70±0.01d1.79±0.01e41.42±2.05d
天台 Tiantai3.93±0.01b2.14±0.01c43.06±2.09c
泰顺 Taishun4.09±0.01a3.25±0.01b44.82±2.12b
定海 Dinghai3.92±0.01b2.13±0.01c43.03±2.13c
临海 Linhai3.99±0.01b2.79±0.01bc43.43±2.31c
仙居 Xianju4.22±0.01a4.51±0.01a45.47±2.36a
兰溪 Lanxi3.89±0.02c1.88±0.01d42.97±2.13d
文成 Wencheng3.94±0.02b2.20±0.01c43.32±2.11c
青田 Qingtian4.15±0.02a3.31±0.01b44.95±2.25b

相关系数

Coefficient of correlation

-0.947 038**-0.929 090**-0.959 090**
Table 4 Correlations between vegetative growth parameters and disease indexes of plant body of the weak bayberry

地点

Address

单果质量

Mass of single fruit/g

可溶性固形物

Soluble solid/%

可滴定酸

Titratable acid/%

维生素C

Vitamin C/(mg/g)

相关系数

Coefficient of correlation

-0.861 932**-0.873 950**0.811 932**-0.869 932**
上虞 Shangyu14.06±0.71c8.03±0.22c0.89±0.04b6.07±0.03b
天台 Tiantai14.78±0.70c8.37±0.45c0.84±0.03b6.50±0.03b
泰顺 Taishun16.48±0.70b8.99±0.42b0.79±0.03c7.08±0.03a
定海 Dinghai12.75±0.61d7.80±0.36d0.99±0.04a4.77±0.02d
临海 Linhai14.63±0.54c8.22±0.41c0.86±0.04b6.18±0.02b
仙居 Xianju15.11±0.54b8.98±0.39b0.80±0.05c7.04±0.03a
兰溪 Lanxi12.85±0.66d7.80±0.36d0.98±0.04a5.34±0.02c
文成 Wencheng14.92±0.71b8.46±0.41c0.83±0.04b6.60±0.03b
青田 Qingtian17.06±0.82a9.71±0.43a0.72±0.03d7.29±0.03a
Table 5 Correlations between fruit quality and disease index of the weak bayberry

处理

Treatment

梢长

Twig length/cm

叶宽

Leaf width/mm

实际病情指数

Actual disease index

预测病情指数

Predictive disease index

准确率

Precision rate/%

123.4628.1714.5315.9590.23
214.7426.0226.8127.7896.38
312.5324.6638.0635.0492.07
Table 6 Accuracy test of the prediction model for bayberry decline disease
[1]   SUN C D, HUANG H Z, XU C J, et al. Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): a review[J]. Plant Foods for Human Nutrition, 2013, 68: 97-106. DOI:10.1007/s11130-013-0349-x
doi: 10.1007/s11130-013-0349-x
[2]   REN H Y, YU H Y, ZHANG S W, et al. Genome sequencing provides insights into the evolution and antioxidant activity of Chinese bayberry[J]. BMC Genomics, 2019(20): 458. DOI:10.1186/s12864-019-5818-7
doi: 10.1186/s12864-019-5818-7
[3]   任海英,郑锡良,张淑文,等.杨梅衰弱病病症及病树矿质营养分析[J].浙江农业科学,2020,61(10):2043-2048. DOI:10.16178/j.issn.0528-9017.20201027
REN H Y, ZHENG X L, ZHANG S W, et al. Analysis on the disease and mineral nutrition of bayberry decline disease[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(10): 2043-2048. (in Chinese)
doi: 10.16178/j.issn.0528-9017.20201027
[4]   汪兆,任海英,郑锡良,等.衰弱杨梅树根际土壤微生物多样性研究[J].浙江农业科学,2021,62(6):1123-1128. DOI:10.16178/j.issn.0528-9017.20210620
WANG Z, REN H Y, ZHENG X L, et al. Study on soil microbial diversity in rhizosphere of the weak Myrica rubra [J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(6): 1123-1128. (in Chinese)
doi: 10.16178/j.issn.0528-9017.20210620
[5]   任海英,王剑,郑锡良,等.生物有机肥对衰弱病杨梅营养改良及强壮树势的作用[J].中国农学通报,2021,37(16):127-137. DOI:10.11924/j.issn.1000-6850.casb2020-0553
REN H Y, WANG J, ZHENG X L, et al. Effect of bio-organic fertilizer on the improvement of nutrition and vigor of weak bayberry[J]. Chinese Agricultural Science Bulletin, 2021, 37(16): 127-137. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0553
[6]   尤建林,高恒锦,任海英.生物炭基肥对衰弱杨梅树果实品质的改良作用[J].福建农业科技,2021,52(5):33-37. DOI:10.13651/j.cnki.fjnykj.2021.05.007
YOU J L, GAO H J, REN H Y. Improvement effects of biochar base fertilizer on the fruit quality of weak Myrica rubra [J]. Fujian Agricultural Science and Technology, 2021, 52(5): 33-37. (in Chinese with English abstract)
doi: 10.13651/j.cnki.fjnykj.2021.05.007
[7]   张建斌,戚行江,吴世军,等.氨基酸水溶肥对复壮杨梅树势和改善果实品质的作用[J].湖南农业科学,2021(5):27-29. DOI:10.16498/j.cnki.hnnykx.2021.005.007
ZHANG J B, QI X J, WU S J, et al. Effects of amino acid water-soluble fertilizer on tree vigor and fruit quality of waxberry (Myrica rubra)[J]. Hunan Agricultural Sciences, 2021(5): 27-29. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2021.005.007
[8]   熊雪梅,王一鸣.植物病害预测预报方法及主要问题[C]//中国农业工程学会2005年学术年会论文集.广州:中国农业工程学会,2005:12.
XIONG X M, WANG Y M. Prediction methods on plant diseases and their main problems[C]//Proceedings of the 2005 Annual Conference of Chinese Society of Agricultural Engineering. Guangzhou: Chinese Society of Agricultural Engineering, 2005: 12. (in Chinese)
[9]   REN H Y, WANG H Y, QI X J, et al. The damage caused by decline disease in bayberry plants through changes in soil properties, rhizosphere microbial community structure and metabolites[J]. Plants, 2021, 10(10): 2083. DOI:10.3390/plants10102083
doi: 10.3390/plants10102083
[10]   张振兰,朱潇婷,任海英,等.杨梅种质资源对凋萎病抗性评价[J].浙江农业科学,2014(10):1567-1569. DOI:10.3969/j.issn.0528-9017.2014.10.024
ZHANG Z L, ZHU X T, REN H Y, et al. Resistance evaluation of Myrica rubra germplasm resources to twig blight disease[J]. Journal of Zhejiang Agricultural Sciences, 2014(10): 1567-1569. (in Chinese)
doi: 10.3969/j.issn.0528-9017.2014.10.024
[11]   中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983:68-298.
Agricultural Chemistry Committee of Chinese Soil Society. Conventional Analysis Methods of Soil Agricultural Chemistry[M]. Beijing: Science Press, 1983: 68-298. (in Chinese)
[12]   王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006:202-203,267-268. DOI:10.1016/j.physio.2005.11.001
WANG X K. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2006: 202-203, 267-268. (in Chinese)
doi: 10.1016/j.physio.2005.11.001
[13]   马耀绒,淡会星,王红军,等.蒲城酥梨黑星病与气象要素关系分析[J].陕西农业科学,2019,65(9):80-82. DOI:10.3969/j.issn.0488-5368.2019.09.022
MA Y R, DAN H X, WANG H J, et al. Analysis of relationship between pear black star disease and meteorological elements in Pucheng[J]. Shaanxi Journal of Agricultural Sciences, 2019, 65(9): 80-82. (in Chinese)
doi: 10.3969/j.issn.0488-5368.2019.09.022
[14]   聂晓,黄冲,刘伟,等.小麦白粉病预测模型的有效性评价[J].植物保护,2020,46(5):38-41. DOI:10.16688/j.zwbh.2020085
NIE X, HUANG C, LIU W, et al. The efficiency evaluation of wheat powdery mildew forecasting models[J]. Plant Protection, 2020, 46(5): 38-41. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2020085
[15]   林瑞,任海英,安笑笑,等.生物有机肥对杨梅凋萎病防控及其树势恢复的影响[J].浙江农业学报,2019,31(7):1096-1104. DOI:10.3969/j.issn.1004-1524.2019.07.09
LIN R, REN H Y, AN X X, et al. Effects of bio-organic fertilizer on twig blight disease control and recovery of tree vigor in bayberry[J]. Acta Agriculturae Zhejiangensis, 2019, 31(7): 1096-1104. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-1524.2019.07.09
[16]   杜研,卢明艳,于婷,等.不同生物有机肥对红枣生长性状及品质影响研究[J].防护林科技,2017(7):34-35. DOI:10.13601/j.issn.1005-5215.2017.07.011
DU Y, LU M Y, YU T, et al. Effects of various bio-fertilizers on growth characteristics and quality of Ziziphus jujuba [J]. Protection Forest Science and Technology, 2017(7): 34-35. (in Chinese with English abstract)
doi: 10.13601/j.issn.1005-5215.2017.07.011
[17]   范传海,赵飞,王丽,等.浅析叶面肥的种类和特点[J].广东化工,2016,43(18):117. DOI:10.3969/j.issn.1007-1865.2016.18.055
FAN C H, ZHAO F, WANG L, et al. Types and characteristics of foliar[J]. Guangdong Chemical Industry, 2016, 43(18): 117. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-1865.2016.18.055
[18]   杨洪泽,张强,董心久,等.锌硼锰肥配合施用对甜菜产量、含糖率和产糖量的影响[J].北方农业学报,2020,48(4):71-74. DOI:10.12190/j.issn.2096-1197.2020.04.11
YANG H Z, ZHANG Q, DONG X J, et al. Effects of application of Zn, B, Mn fertilizers on yield, sugar content and sugar yield in sugar beet[J]. Journal of Northern Agriculture, 2020, 48(4): 71-74. (in Chinese with English abstract)
doi: 10.12190/j.issn.2096-1197.2020.04.11
[19]   冯丽丹,李捷,赵宾宾,等.叶面喷施硼肥对‘梅鹿辄’葡萄产量及果实品质的影响[J].中国果树,2016(4):21-25. DOI:10.16626/j.cnki.issn1000-8047.2016.04.005
FENG L D, LI J, ZHAO B B, et al. Effects of foliar spraying borax fertilizer on yield and fruit quality of ‘Merlot’ grape[J]. China Fruits, 2016(4): 21-25. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2016.04.005
[20]   李军,刘凤军,张国芹,等.叶面喷施锰肥对番茄果实品质的影响[J].江苏农业科学,2011,39(6):273-274. DOI:10.15889/j.issn.1002-1302.2011.06.178
LI J, LIU F J, ZHANG G Q, et al. Effects of manganese fertilizer on fruit quality of tomato[J]. Jiangsu Agricultural Sciences, 2011, 39(6): 273-274. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2011.06.178
[21]   曾士迈.植保系统工程导论[M].北京:北京农业大学出版社, 1994:79-89.
ZENG S M. Introduction to Plant Protection System Engineering[M]. Beijing: Beijing Agricultural University Press, 1994: 79-89. (in Chinese)
[22]   杨秀娟,陈福如,阮宏椿,等.柑桔溃疡病发生测报模型的建立[J].江西农业大学学报,2004,26(6):881-884. DOI:10.3969/j.issn.1000-2286.2004.06.013
YANG X J, CHEN F R, RUAN H C, et al. Establishment of the forecast mathematical model of citrus bacterial canker disease[J]. Acta Agriculturae Universitatis Jiangxiensis, 2004, 26(6): 881-884. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2286.2004.06.013
[23]   尹哲,李金萍,郭喜红,等.北京地区春季大棚番茄灰霉病发生规律分析及预测模型构建[J].湖北农业科学,2016,55(13):3356-3358. DOI:10.14088/j.cnki.issn0439-8114.2016.13.021
YIN Z, LI J P, GUO X H, et al. Analysis of spreading regularity and construction prediction model of tomato gray mold in green house in the spring in Beijing[J]. Hubei Agricultural Sciences, 2016, 55(13): 3356-3358. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2016.13.021
[24]   张王斌,樊民周,安德荣.洛川苹果腐烂病发生流行预测模型的研究[J].中国植保导刊,2006,26(3):30-31. DOI:10.3969/j.issn.1672-6820.2006.03.014
ZHANG W B, FAN M Z, AN D R. Study on forecasting model of apple canker prevalence in Luochuan County[J]. China Plant Protection, 2006, 26(3): 30-31. (in Chinese)
doi: 10.3969/j.issn.1672-6820.2006.03.014
[1] Mingxia WEN,Peng WANG,Shaohui WU,Bei HUANG. Effects of spraying selenium at different stages on nutrient absorption and fruit quality of ‘Bendizao’ citrus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 29-35.
[2] Jue WU,Wenhua XIE,Shuting XU,Yezhi CHEN,Jinping CAO,Yue WANG,Chongde SUN. Effect of high voltage electrostatic field treatment on the storability of postharvest ponkan fruit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 64-73.
[3] ZHANG Liping, LU Xiaoming, LU Meidan, WANG Li, LI Kunfeng, SHEN Linzhang, JIA Huijuan. Key techniques of simplification of fruit thinning in grape cultivar “Muscat of Alexandria”[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 327-332.
[4] LI Haiyan, ZHANG Liping, WANG Li, YIN Yiming, JIA Huijuan. Effects of two kinds of plant growth regulators on fruit quality of Shine Muscat grape[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 419-426.
[5] Li Xuebin, Chen Lin, Fan Ruixia, Wu Xiuling, Xie Yingzhong . Effects of four typical plant community litter input on soil physical and chemical properties under the fenced condition in desert steppe[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 101-110.
[6] Chen Lin, Yang Xinguo, Song Naiping*, Li Xuebin, Zhai Deping . Effects of planting alfalfa on soil quality in desert steppe of Ningxia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 541-550.
[7] Lu Meidan1, He Kun2, Pei Qingsong3, Jia Huijuan1* . Effects of different fruit loads on berry maturity and quality in grape cultivar “Yinhong”.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 175-180.
[8] WAN Yan,YAN Yan hong,YANG Wen yu. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybeanunder different nitrogen levels.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 185-196.