Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 445-453    DOI: 10.3785/j.issn.1008-9209.2023.04.181
Reviews     
Molecular tools and technological innovation in oil crop breeding
Ling XU1(),Hui LIU2(),Guijun YAN2,Wallace COWLING2,Weijun ZHOU3(),Zhanyuan LU4()
1.College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
2.UWA School of Agriculture and Environment/The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia
3.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
Download: HTML   HTML (   PDF(885KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Oil crop breeding programs generally aim to improve yield, quality, and stress resistance. Major oil crops include soybean, rape, sunflower and peanut according to their current production worldwide. This paper reviewed the molecular tools and technological innovation in oil crop breeding, including advanced technologies such as genome selection, genome editing, and molecular design breeding. Challenges exist in current genetic studies and breeding practices, and future perspectives of technological progress and application are also discussed for achieving high yield, high quality, and efficient breeding of oil crops.



Key wordsoil crops      breeding      molecular tools      technological innovation     
Received: 18 April 2023      Published: 29 August 2023
CLC:  S565  
Corresponding Authors: Weijun ZHOU,Zhanyuan LU     E-mail: lxu@zstu.edu.cn;hui.liu@uwa.edu.au。;wjzhou@zju.edu.cn;lzhy281@163.com
Cite this article:

Ling XU,Hui LIU,Guijun YAN,Wallace COWLING,Weijun ZHOU,Zhanyuan LU. Molecular tools and technological innovation in oil crop breeding. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 445-453.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.04.181     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/445


油料作物育种的分子工具和技术创新

油料作物的主要育种目标是提高产量、品质和抗逆性。目前,就产量而言,全球主要油料作物依次为大豆、油菜、向日葵和花生。本文综述了这些主要油料作物育种的分子工具和技术创新,包括基因组选择、基因组编辑、分子设计育种等新技术,指出了当前在遗传研究和育种实践中存在的主要问题,并对技术进展和未来应用前景进行了展望,旨在为油料作物高产、优质、高效育种提供借鉴。


关键词: 油料作物,  育种,  分子工具,  技术创新 

油料作物

Oil crop

育种目标性状

Target trait for breeding

分子工具或

技术创新

Molecular tool

or technological

innovation

主要结果

Key result

文献

Reference

大豆

Soybean

产量基因组选择基因组选择可成功预测遗传力高的性状,如蛋白质和含油量[21]
品质转基因大豆油基因被改变(如在脂肪酸去饱和酶2基因FAD2-1AFAD2-1B中引入突变)后,多不饱和脂肪酸的百分比增加了4倍[22-23]
抗逆性基因编辑通过靶向切割NBS-LRRs基因的串联重复区域并随后修复DNA,开发出大豆中新型R基因旁系同源物[24-25]

油菜

Rape

产量基因组选择基因组选择有望加速油菜籽育种进程[26-27]
品质基因编辑CRISPR介导的技术已被用于许多改善菜籽油的研究[28]
抗逆性基因编辑BnaALS基因经过碱基编辑后产生了抗除草剂油菜[29]
产量液相芯片油菜50K泛基因组液相捕获芯片BnaPan50T[30]

花生

Peanut

产量多组学分析多组学分析表明,木质素积累会影响花生荚大小,从而影响花生产量[31]
品质、抗逆性转基因一些优质和抗逆基因已通过转基因技术成功转入花生[32]

向日葵

Sunflower

产量遥感和卫星图像利用遥感能在田间水平上预测葵花籽产量[33]
品质、抗逆性

转基因、多组学

分析

有几种性状尝试过转基因处理,但尚未有商业化的转基因向日葵品种;多组学研究明确了向日葵在干旱条件下的代谢途径和中心转录因子[34-36]
Table 1 Examples of using molecular tools and technological innovation for breeding of yield, quality, and stress resistance in major oil crops
[1]   TOKEL D, ERKENCIOGLU B N. Production and trade of oil crops, and their contribution to the world economy[M]//TOMBULOGLU H, UNVER T, TOMBULOGLU G, et al. Oil Crop Genomics. Cham, Switzerland: Springer, 2021: 415-427. DOI: 10.1007/978-3-030-70420-9_20
doi: 10.1007/978-3-030-70420-9_20
[2]   United States Department of Agriculture. Foreign Agricultural Service. Oilseeds: World Markets and Trade[R/OL]. 2023-01-12[2023-04-08].
[3]   WITTKOP B, SNOWDON R J, FRIEDT W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe[J]. Euphytica, 2009, 170(1/2): 131-140. DOI: 10.1007/s10681-009-9940-5
doi: 10.1007/s10681-009-9940-5
[4]   Organization for Economic Co-operation and Development (OECD), Food and Agriculture Organization of the United Nations (FAO). OECD-FAO Agricultural Outlook 2021—2030 [M]. Paris, France: OECD Publishing, 2021. DOI: 10.1787/19428846-en
doi: 10.1787/19428846-en
[5]   United States Department of Agriculture. Foreign Agricultural Service. China: Biofuels Annual[R/OL]. 2021-09-16[2023-02-04].
[6]   WANG F, XIONG X R, LIU C Z. Biofuels in China: opportunities and challenges[J]. In Vitro Cellular & Develop-mental Biology-Plant, 2009, 45(3): 342-349. DOI: 10.1007/s11627-009-9209-7
doi: 10.1007/s11627-009-9209-7
[7]   PARK B, BURKE J M. Phylogeography and the evolutionary history of sunflower (Helianthus annuus L.): wild diversity and the dynamics of domestication[J]. Genes, 2020, 11(3): 266. DOI: 10.3390/genes11030266
doi: 10.3390/genes11030266
[8]   DIMITRIJEVIC A, HORN R. Sunflower hybrid breeding: from markers to genomic selection[J]. Frontiers in Plant Science, 2018, 8: 2238. DOI: 10.3389/fpls.2017.02238
doi: 10.3389/fpls.2017.02238
[9]   WANI S H, SAINI H K, GUPTA V, et al. Present status and future prospects for heterosis breeding in sunflower (Helianthus annuus L.)[J]. Asian Journal of Science and Technology, 2010, 2: 49-54.
[10]   LIN J J, KUO J, MA J, et al. Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques[J]. Plant Molecular Biology Reporter, 1996, 14(2): 156-169.
[11]   RABOANATAHIRY N, LI H X, YU L J, et al. Rapeseed (Brassica napus): processing, utilization, and genetic improve-ment[J]. Agronomy, 2021, 11(9): 1776. DOI: 10.3390/agronomy11091776
doi: 10.3390/agronomy11091776
[12]   LYU P, HOU J H, YU H F, et al. High-density genetic linkage map construction in sunflower (Helianthus annuus L.) using SNP and SSR markers[J]. Current Bioinformatics, 2020, 15(8): 889-897. DOI: 10.2174/1574893615666200324134725
doi: 10.2174/1574893615666200324134725
[13]   WANG J, YAN C X, LI Y, et al. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies[J]. Genes, 2019, 10(10): 803. DOI: 10.3390/genes10100803
doi: 10.3390/genes10100803
[14]   CHUGH V, KAUR D, PURWAR S, et al. Applications of molecular markers for developing abiotic-stress-resilient oilseed crops[J]. Life, 2023, 13: 88. DOI: 10.3390/life13010088
doi: 10.3390/life13010088
[15]   International Atomic Energy Agency (IAEA). Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology[M]. Vienna, Austria: IAEA, 2003.
[16]   VALLIYODAN B, BROWN A V, WANG J X, et al. Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing[J]. Scientific Data, 2021, 8: 50. DOI: 10.1038/s41597-021-00834-w
doi: 10.1038/s41597-021-00834-w
[17]   NADEEM M A, NAWAZ M A, SHAHID M Q, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing[J]. Biotechnology & Biotechnological Equipment, 2018, 32(2): 261-285. DOI: 10.1080/13102818.2017.1400401
doi: 10.1080/13102818.2017.1400401
[18]   LIU Y C, DU H L, LI P C, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182: 162-176. DOI: 10.1016/j.cell.2020.05.023
doi: 10.1016/j.cell.2020.05.023
[19]   RATHNAKUMAR A L, SUJATHA M. Breeding major oilseed crops: prospects and future research needs[M]//GOSAL S S, WANI S H. Accelerated Plant Breeding:Vol. 4. Cham, Switzerland: Springer, 2022: 1-40. DOI: 10.1007/978-3-030-81107-5_1
doi: 10.1007/978-3-030-81107-5_1
[20]   HE J J, ZHANG K, TANG M, et al. CRISPR-based genome editing technology and its applications in oil crops[J]. Oil Crop Science, 2021, 6(3): 105-113. DOI: 10.1016/j.ocsci.2021.07.002
doi: 10.1016/j.ocsci.2021.07.002
[21]   STEWART-BROWN B B, SONG Q J, VAUGHN J N, et al. Genomic selection for yield and seed composition traits within an applied soybean breeding program[J]. G3: Genes Genomes Genetics, 2019, 9(7): 2253-2265. DOI: 10.1534/g3.118.200917
doi: 10.1534/g3.118.200917
[22]   HAUN W, COFFMAN A, CLASEN B M, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnology Journal, 2014, 12(7): 934-940. DOI: 10.1111/pbi.12201
doi: 10.1111/pbi.12201
[23]   STEINWAND M A, RONALD P C. Crop biotechnology and the future of food[J]. Nature Food, 2020, 1(5): 273-283. DOI: 10.1038/s43016-020-0072-3
doi: 10.1038/s43016-020-0072-3
[24]   BISHT A, SAINI D K, KAUR B, et al. Multi-omics assisted breeding for biotic stress resistance in soybean[J]. Molecular Biology Reports, 2023, 50(4): 3787-3814. DOI: 10.1007/s11033-023-08260-4
doi: 10.1007/s11033-023-08260-4
[25]   NAGY E D, STEVENS J L, YU N L, et al. Novel disease resistance gene paralogs created by CRISPR/Cas9 in soy[J]. Plant Cell Reports, 2021, 40(6): 1047-1058. DOI: 10.1007/s00299-021-02678-5
doi: 10.1007/s00299-021-02678-5
[26]   HU J H, CHEN B Y, ZHAO J, et al. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding[J]. Nature Genetics, 2022, 54(5): 694-704. DOI: 10.1038/s41588-022-01055-6
doi: 10.1038/s41588-022-01055-6
[27]   ROY J, SHAIKH T M, DEL RÍO MENDOZA L, et al. Genome-wide association mapping and genomic prediction for adult stage sclerotinia stem rot resistance in Brassica napus (L) under field environments[J]. Scientific Reports, 2021, 11: 21773. DOI: 10.1038/s41598-021-01272-9
doi: 10.1038/s41598-021-01272-9
[28]   ALI E, ZHANG K W. CRISPR-mediated technology for seed oil improvement in rapeseed: challenges and future perspectives[J]. Frontiers in Plant Science, 2023, 14: 1086847. DOI: 10.3389/fpls.2023.1086847
doi: 10.3389/fpls.2023.1086847
[29]   HU L M, AMOO O, LIU Q Q, et al. Precision genome engineering through cytidine base editing in rapeseed (Brassica napus L.)[J]. Frontiers in Genome Editing, 2020, 2: 605768. DOI: 10.3389/fgeed.2020.605768
doi: 10.3389/fgeed.2020.605768
[30]   LI X D, LIU X M, FAN Y H, et al. Development of a target capture sequencing SNP genotyping platform for genetic analysis and genomic breeding in rapeseed[J]. The Crop Journal, 2023, 11(2): 499-510. DOI: 10.1016/j.cj.2022.08.008
doi: 10.1016/j.cj.2022.08.008
[31]   LÜ Z H, ZHOU D Y, SHI X L, et al. Comparative multi-omics analysis reveals lignin accumulation affects peanut pod size[J]. International Journal of Molecular Sciences, 2022, 23(21): 13533. DOI: 10.3390/ijms232113533
doi: 10.3390/ijms232113533
[32]   MOTAGI B N, BHAT R S, PUJER S, et al. Genetic enhancement of groundnut: current status and future prospects[M]//GOSAL S S, WANI S H. Accelerated Plant Breeding:Vol. 4. Cham, Switzerland: Springer, 2022: 63-110. DOI: 10.1007/978-3-030-81107-5_3
doi: 10.1007/978-3-030-81107-5_3
[33]   AMANKULOVA K, FARMONOV N, MUCSI L. Time-series analysis of sentinel-2 satellite images for sunflower yield estimation[J]. Smart Agricultural Technology, 2023, 3: 100098. DOI: 10.1016/j.atech.2022.100098
doi: 10.1016/j.atech.2022.100098
[34]   JOCKOVIĆ M, JOCIĆ S, CVEJIĆ S, et al. Genetic improve-ment in sunflower breeding-integrated omics approach[J]. Plants, 2021, 10(6): 1150. DOI: 10.3390/plants10061150
doi: 10.3390/plants10061150
[35]   MOSCHEN S, DI RIENZO J A, HIGGINS J, et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)[J]. Plant Molecular Biology, 2017, 94(4/5): 549-564. DOI: 10.1007/s11103-017-0625-5
doi: 10.1007/s11103-017-0625-5
[36]   SHERI V, MUDDANURU T, MULPURI S. Genetic engi-neering of sunflower(Helianthus annuus L.) for important agronomic traits[M]//KAVI KISHOR P B, RAJAM M V, PULLAIAH T. Genetically Modified Crops. Singapore: Springer, 2021: 175-200. DOI: 10.1007/978-981-15-5897-9_9
doi: 10.1007/978-981-15-5897-9_9
[37]   FAN M S, SHEN J B, YUAN L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2012, 63(1): 13-24. DOI: 10.1093/jxb/err248
doi: 10.1093/jxb/err248
[38]   DIERS B W, SPECHT J, RAINEY K M, et al. Genetic architecture of soybean yield and agronomic traits[J]. G3: Genes Genomes Genetics, 2018, 8(10): 3367-3375. DOI: 10.1534/g3.118.200332
doi: 10.1534/g3.118.200332
[39]   VOGEL J T, LIU W D, OLHOFT P, et al. Soybean yield formation physiology-a foundation for precision breeding based improvement[J]. Frontiers in Plant Science, 2021, 12: 719706. DOI: 10.3389/fpls.2021.719706
doi: 10.3389/fpls.2021.719706
[40]   GHAFFARI G, TOORCHI M, AHARIZAD S, et al. Relationship between physiological and seed yield related traits in winter rapeseed (Brassica napus L.) cultivars under water deficit stress[J]. American Journal of Agriculture and Forestry, 2014, 2(6): 262-266. DOI: 10.11648/j.ajaf.20140206.15
doi: 10.11648/j.ajaf.20140206.15
[41]   CONNOR D J, SADRAS V O. Physiology of yield expression in sunflower[J]. Field Crops Research, 1992, 30(3/4): 333-389.
[42]   JOCIĆ S, MILADINOVIĆ D, KAYA Y, et al. Breeding and genetics of sunflower[J]. Sunflower, 2015: 1-25. DOI: 10.1016/B978-1-893997-94-3.50007-6
doi: 10.1016/B978-1-893997-94-3.50007-6
[43]   DESMAE H, JANILA P, OKORI P, et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.)[J]. Plant Breeding, 2019, 138(4): 425-444. DOI: 10.1111/pbr.12645
doi: 10.1111/pbr.12645
[44]   SINGH A L. Physiological basis for realizing yield potentials in groundnut[M]//HEMANTRANJAN A. Advances in Plant Physiology: Vol. 12. Jodhpur, India: Scientific Publishers, 2011: 131-242.
[45]   SAVADI S, LAMBANI N, KASHYAP P L, et al. Genetic engineering approaches to enhance oil content in oilseed crops[J]. Plant Growth Regulation, 2017, 83(2): 207-222. DOI: 10.1007/s10725-016-0236-1
doi: 10.1007/s10725-016-0236-1
[46]   SILVA L C C, MATTA L B DA, PEREIRA G R, et al. Association studies and QTL mapping for soybean oil content and composition[J]. Euphytica, 2021, 217(2): 24. DOI: 10.1007/s10681-020-02755-y
doi: 10.1007/s10681-020-02755-y
[47]   ABBADI A, LECKBAND G. Rapeseed breeding for oil content, quality, and sustainability[J]. European Journal of Lipid Science and Technology, 2011, 113(10): 1198-1206. DOI: 10.1002/ejlt.201100063
doi: 10.1002/ejlt.201100063
[48]   PARMAR S, SHARMA V, BOMIREDDY D, et al. Recent advances in genetics, genomics, and breeding for nutritional quality in groundnut[M]//GOSAL S S, WANI S H. Accelerated Plant Breeding:Vol. 4. Cham, Switzerland: Springer, 2022: 111-137. DOI: 10.1007/978-3-030-81107-5_4
doi: 10.1007/978-3-030-81107-5_4
[49]   DOWNEY R K, CRAIG B M, YOUNGS C G. Breeding rapeseed for oil and meal quality[J]. Journal of the American Oil Chemists Society, 1969, 46(3): 121-123.
[50]   ANSARI S B, RAINA A, AMIN R, et al. Mutation breeding for quality improvement: a case study for oilseed crops[M]//BHAT T A. Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science. Newcastle, UK: Cambridge Scholars Publishing, 2021: 171-221.
[51]   FERNÁNDEZ-MARTĺNEZ J M, PÉREZ-VICH B, VELASCO L, et al. Breeding for specialty oil types in sunflower[J]. Helia, 2014, 30(46): 75-84. DOI: 10.2298/HEL0746075F
doi: 10.2298/HEL0746075F
[52]   RAZA A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: conse-quences and mitigation strategies[J]. Journal of Plant Growth Regulation, 2021, 40(4): 1368-1388. DOI: 10.1007/s00344-020-10231-z
doi: 10.1007/s00344-020-10231-z
[53]   POUDEL S, VENNAM R R, SHRESTHA A, et al. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages[J]. Scientific Reports, 2023, 13: 1277. DOI: 10.1038/s41598-023-28354-0
doi: 10.1038/s41598-023-28354-0
[54]   CHEN Q Y, TIAN F. Towards knowledge-driven breeding[J]. Nature Plants, 2021, 7(3): 242-243. DOI: 10.1038/s41477-021-00864-7
doi: 10.1038/s41477-021-00864-7
[55]   ATTIA Z, POGODA C S, REINERT S, et al. Breeding for sustainable oilseed crop yield and quality in a changing climate[J]. Theoretical and Applied Genetics, 2021, 134(6): 1817-1827. DOI: 10.1007/s00122-021-03770-w
doi: 10.1007/s00122-021-03770-w
[56]   MILADINOVIĆ D, VOLLMANN J, MOLINERO-RUIZ L, et al. Editorial: advances in oil crops research-classical and new approaches to achieve sustainable productivity[J]. Frontiers in Plant Science, 2019, 10: 791. DOI: 10.3389/fpls.2019.00791
doi: 10.3389/fpls.2019.00791
[57]   ARYA H, SINGH M B, BHALLA P L. Towards developing drought-smart soybeans[J]. Frontiers in Plant Science, 2021, 12: 750664. DOI: 10.3389/fpls.2021.750664
doi: 10.3389/fpls.2021.750664
[58]   RAUF S. Breeding strategies for sunflower (Helianthus annuus L.) genetic improvement[M]//AL-KHAYRI J M, JAIN S M, JOHNSON D V. Advances in Plant Breeding Strategies: Industrial and Food Crops:Vol. 6. Cham, Switzerland: Springer, 2019: 637-673. DOI: 10.1007/978-3-030-23265-8_16
doi: 10.1007/978-3-030-23265-8_16
[59]   ARAVIND B, NAYAK S N, CHOUDHARY R S, et al. Integration of genomics approaches in abiotic stress tolerance in groundnut (Arachis hypogaea L.): an overview[M]//KOLE C. Genomic Designing for Abiotic Stress Resistant Oilseed Crops. Berlin, Germany: Springer, 2022: 149-197. DOI: 10.1007/978-3-030-90044-1_4
doi: 10.1007/978-3-030-90044-1_4
[60]   YAN G J, LIU H, WANG H B, et al. Accelerated generation of selfed pure line plants for gene identification and crop breeding[J]. Frontiers in Plant Science, 2017, 8: 1786. DOI: 10.3389/fpls.2017.01786
doi: 10.3389/fpls.2017.01786
[61]   FANG Y D, WANG L W, SAPEY E, et al. Speed-breeding system in soybean: integrating off-site generation advancement, fresh seeding, and marker-assisted selection[J]. Frontiers in Plant Science, 2021, 12: 717077. DOI: 10.3389/fpls.2021.717077
doi: 10.3389/fpls.2021.717077
[62]   WATSON A, GHOSH S, WILLIAMS M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nature Plants, 2018, 4: 23-29. DOI: 10.1038/s41477-017-0083-8
doi: 10.1038/s41477-017-0083-8
[63]   O’CONNOR D J, WRIGHT G C, DIETERS M J, et al. Development and application of speed breeding technologies in a commercial peanut breeding program[J]. Peanut Science, 2013, 40(2): 107-114. DOI: 10.3146/ps12-12.1
doi: 10.3146/ps12-12.1
[64]   COWLING W A, CASTRO-URREA F A, STEFANOVA K T, et al. Optimal contribution selection improves the rate of genetic gain in grain yield and yield stability in spring canola in Australia and Canada[J]. Plants, 2023, 12(2): 383. DOI: 10.3390/plants12020383
doi: 10.3390/plants12020383
[65]   ZHANG Z B, DUNWELL J M, ZHANG Y M. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus [J]. BMC Plant Biology, 2018, 18: 328. DOI: 10.1186/s12870-018-1542-8
doi: 10.1186/s12870-018-1542-8
[66]   CHU J S C, PENG B, TANG K Q, et al. Eight soybean reference genome resources from varying latitudes and agronomic traits[J]. Scientific Data, 2021, 8: 164. DOI: 10.1038/s41597-021-00947-2
doi: 10.1038/s41597-021-00947-2
[67]   SONG J M, GUAN Z L, HU J L, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differ-entiation of Brassica napus [J]. Nature Plants, 2020, 6: 34-45. DOI: 10.1038/s41477-019-0577-7
doi: 10.1038/s41477-019-0577-7
[68]   WU D Z, LIANG Z, YAN T, et al. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence[J]. Molecular Plant, 2019, 12(1): 30-43. DOI: 10.1016/j.molp.2018.11.007
doi: 10.1016/j.molp.2018.11.007
[69]   BADOUIN H, GOUZY J, GRASSA C J, et al. The sunflower genome provides insights into oil metabolism, flowering and asterid evolution[J]. Nature, 2017, 546(7656): 148-152. DOI: 10.1038/nature22380
doi: 10.1038/nature22380
[70]   ZHUANG W J, CHEN H, YANG M, et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication[J]. Nature Genetics, 2019, 51(5): 865-876. DOI: 10.1038/s41588-019-0402-2
doi: 10.1038/s41588-019-0402-2
[71]   TORKAMANEH D, LAROCHE J, VALLIYODAN B, et al. Soybean (Glycine max) haplotype map (GmHapMap): a universal resource for soybean translational and functional genomics[J]. Plant Biotechnology Journal, 2021, 19(2): 324-334. DOI: 10.1111/pbi.13466
doi: 10.1111/pbi.13466
[72]   KASHYAP H, AHMED H A, HOQUE N, et al. Big data analytics in bioinformatics: architectures, techniques, tools and issues[J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 2016, 5: 28. DOI: 10.1007/s13721-016-0135-4
doi: 10.1007/s13721-016-0135-4
[73]   HICKEY J M, CHIURUGWI T, MACKAY I, et al. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery[J]. Nature Genetics, 2017, 49(9): 1297-1303. DOI: 10.1038/ng.3920
doi: 10.1038/ng.3920
[74]   SARADADEVI R, MUKANKUSI C, LI L, et al. Multivariate genomic analysis and optimal contribution selection predicts high genetic gains in cooking time, iron, zinc, and grain yield in common beans in East Africa[J]. Plant Genome, 2021, 14(3): e20156. DOI: 10.1002/tpg2.20156
doi: 10.1002/tpg2.20156
[75]   WANG H, WANG H Y. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits[J]. Molecular Plant, 2015, 8(5): 677-688. DOI: 10.1016/j.molp.2015.01.008
doi: 10.1016/j.molp.2015.01.008
[76]   MATEI G, WOYANN L G, MILIOLI A S, et al. Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection[J]. Molecular Breeding, 2018, 38(9): 117. DOI: 10.1007/s11032-018-0872-4
doi: 10.1007/s11032-018-0872-4
[77]   JANILA P, VARIATH M T, PANDEY M K, et al. Genomic tools in groundnut breeding program: status and perspectives[J]. Frontiers in Plant Science, 2016, 7: 289. DOI: 10.3389/fpls.2016.00289
doi: 10.3389/fpls.2016.00289
[78]   BAO A L, ZHANG C J, HUANG Y, et al. Genome editing technology and application in soybean improvement[J]. Oil Crop Science, 2020, 5: 31-40. DOI: 10.1016/j.ocsci.2020.03.001
doi: 10.1016/j.ocsci.2020.03.001
[79]   CARRIJO J, ILLA-BERENGURE E, LAFAYETTE P, et al. Two efficient CRISPR/Cas9 systems for gene editing in soybean[J]. Transgenic Research, 2021, 30(3): 239-249. DOI: 10.1007/s11248-021-00246-x
doi: 10.1007/s11248-021-00246-x
[80]   XU H, ZHANG L X, ZHANG K, et al. Progresses, challenges, and prospects of genome editing in soybean (Glycine max)[J]. Frontiers in Plant Science, 2020, 11: 571138. DOI: 10.3389/fpls.2020.571138
doi: 10.3389/fpls.2020.571138
[81]   ZHAI Y G, CAI S L, HU L M, et al. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L.[J]. Theoretical and Applied Genetics, 2019, 132(7): 2111-2123. DOI: 10.1007/s00122-019-03341-0
doi: 10.1007/s00122-019-03341-0
[82]   NEELAKANDAN A K, SUBEDI B, TRAORE S M, et al. Base editing in peanut using CRISPR/nCas9[J]. Frontiers in Genome Editing, 2022, 4: 901444. DOI: 10.3389/fgeed.2022.901444
doi: 10.3389/fgeed.2022.901444
[83]   PAREDDY D, CHENNAREDDY S, ATHONY G, et al. Improved soybean transformation for efficient and high throughput transgenic production[J]. Transgenic Research, 2020, 29(3): 267-281. DOI: 10.1007/s11248-020-00198-8
doi: 10.1007/s11248-020-00198-8
[84]   ZHANG K, HE J J, LIU L, et al. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus [J]. Plant Methods, 2020, 16: 43. DOI: 10.1186/s13007-020-00585-6
doi: 10.1186/s13007-020-00585-6
[85]   GANTAIT S, MONDAL S. Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors[J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 537-544. DOI: 10.1016/j.jgeb.2018.08.005
doi: 10.1016/j.jgeb.2018.08.005
[86]   EVERETT N P, ROBINSON K E P, MASCARENHAS D. Genetic engineering of sunflower (Helianthus annuus L.)[J]. Nature Biotechnology, 1987, 5(11): 1201-1204.
[87]   ANDERS S, COWLING W, PAREEK A, et al. Gaining acceptance of novel plant breeding technologies[J]. Trends in Plant Science, 2021, 26(6): 575-587. DOI: 10.1016/j.tplants.2021.03.004
doi: 10.1016/j.tplants.2021.03.004
[88]   王建康,李慧慧,张学才,等.中国作物分子设计育种[J].作物学报,2011,37(2):191-201. DOI:10.3724/sp.J.1006.2011.00191
WANG J K, LI H H, ZHANG X C, et al. Molecular design breeding in crops in China[J]. Acta Agronomica Sinica, 2011, 37(2): 191-201. (in Chinese with English abstract)
doi: 10.3724/sp.J.1006.2011.00191
[89]   LIU S Y, RAMAN H, XIANG Y, et al. De novo design of future rapeseed crops: challenges and opportunities[J]. The Crop Journal, 2022, 10(3): 587-596. DOI: 10.1016/j.cj.2022.05.003
doi: 10.1016/j.cj.2022.05.003
[90]   GUO Y F. Molecular design for rice breeding[J]. Nature Food, 2021, 2(11): 849. DOI: 10.1038/s43016-021-00410-w
doi: 10.1038/s43016-021-00410-w
[91]   TANG W C, TANG R X, GUO T, et al. Remote prediction of oilseed rape yield via gaofen-1 images and a crop model[J]. Remote Sensing, 2022, 14(9): 2041. DOI: 10.3390/rs14092041
doi: 10.3390/rs14092041
[1] WANG Guiyue, ZHAO Fucheng, HAN Hailiang, BAO Fei, TAN Heping, YU Qiying. Analysis of yield, quality and resistance of fresh maize cultivars in Zhejiang Province and corresponding breeding objectives[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 343-355.
[2] CHEN Tingting, LI Xianfu, JIA Chunlei, AN Xueqin, ZHU Jun, XIAO Lizeng, DAI Xiumei, ZHANG Jiankui. Characteristics of new flue-cured tobacco strains developed from Yunyan87 mutants and their DNA fingerprint identification.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 179-189.
[3] FAN Longjiang, WANG Weidi, WANG Bin, YE Chuyu, SHU Qingyao, ZHANG Hui. Crop breeding-related data and application of big data technologies in crop breeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 30-39.
[4] WANG Yingying,HUANG Lu, FAN Longjiang*. Main agronomic traits, domestication and breeding of Gu (Zizania latifolia)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(6): 629-635.
[5] LIN Hai-jing,XIA Xin-cheng,WANG Jun-feng,GAO Feng,ZHOU Guang-hong. Breeding of highly efficient detoxification strains of cottonseed meal[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 252-258.
[6] LV Qian1,WU Liang- huan1,XU Jian- long2,SHOU Hui- xia3,YANG Xiao- e1. Effects of foliar iron amino acids fertilizer on iron content and nutrition quality of rice grain .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(5): 528-534.