Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (2): 258-269    DOI: 10.3785/j.issn.1008-9209.2023.12.121
Research Articles     
Simulating diversity hotspots of wild relatives of aquatic vegetable crops in China
Lidong ZHANG1,2(),Kaifeng XING1,2,Ziwei ZHU1,2,3,4,Jian ZHANG1,2,3,Jun RONG1,2,3,4,Yao ZHAO1,2,3()
1.School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
2.Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University), Nanchang 330031, Jiangxi, China
3.Jiangxi Poyang Lake Wetland Conservation and Restoration National Permanent Scientific Research Base/National Ecosystem Research Station of Jiangxi Poyang Lake Wetland, Nanchang 330031, Jiangxi, China
4.Jiangxi Academy of Forestry, Nanchang 330013, Jiangxi, China
Download: HTML   HTML (   PDF(2736KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aquatic vegetable crops are a unique group of domesticated crops from the farming civilization of the Yangtze River Basin, and their wild relatives are valuable genetic resources for breeding and variety improvement. This study utilized online database information from the iPlant and the Chinese Virtual Herbarium to obtain the geographical distribution data of 36 wild relatives of 10 aquatic vegetable crops. We used the maximum entropy model (MaxEnt) to construct an ecological niche model in conjunction with climatic factor data to predict future changes in species distributions. The results revealed that diversity hotspots for these wild relatives are concentrated in the Dongting Lake and Poyang Lake basins, aligning with the origin of the Yangtze River Basin farming civilization, indicating a historical proximity between the civilization and its plant resources. Under the climate scenario of future warming, the suitable distribution hotspots of wild relatives of aquatic vegetable crops may expand further, and the centers of diversity hotspots may migrate to high latitudes. This scenario could favor the maintenance and enhancement of wild relatives’ diversity, providing a theoretical basis for their conservation.



Key wordsaquatic vegetable crops      wild relatives      diversity hotspots      maximum entropy model      climate change     
Received: 12 December 2023      Published: 25 April 2024
CLC:  Q948  
Corresponding Authors: Yao ZHAO     E-mail: 405600220130@email.ncu.edu.cn;yaozhao@ncu.edu.cn
Cite this article:

Lidong ZHANG,Kaifeng XING,Ziwei ZHU,Jian ZHANG,Jun RONG,Yao ZHAO. Simulating diversity hotspots of wild relatives of aquatic vegetable crops in China. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 258-269.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.12.121     OR     https://www.zjujournals.com/agr/Y2024/V50/I2/258


中国水生蔬菜作物野生近缘种多样性热点区域模拟

水生蔬菜作物是长江流域农耕文明驯化作物中的独特类群,其野生近缘种是育种和品种改良的宝贵遗传资源。本研究从中国植物+物种信息系统和中国数字植物标本馆获取了10种水生蔬菜作物的36个野生近缘种的地理分布数据并进行了校对,结合相应的气候因子数据,使用最大熵模型(maximum entropy model, MaxEnt)构建生态位模型,并对物种未来分布变化进行预测。结果表明:水生蔬菜作物野生近缘种多样性热点区域主要位于长江中下游的洞庭湖和鄱阳湖流域,与长江流域农耕文明起源地相重合,表明农耕文明对植物资源的就近利用。在未来升温的气候情景下,水生蔬菜作物野生近缘种适宜分布热点区域可能会进一步扩张,多样性热点区域中心向高纬度地区迁移,这有利于水生蔬菜作物野生近缘种多样性的维持和提升,并为其保护提供了理论依据。


关键词: 水生蔬菜作物,  野生近缘种,  多样性热点区域,  最大熵模型,  气候变化 

序号

No.

栽培蔬菜

Cultivated

vegetable

属 Genus

野生近缘种数量

Number of wild

relatives

中文名

Chinese

name

拉丁名

Latin

name

1荸荠荸荠属Eleocharis14
2芋头芋属Colocasia3
3茭白菰属Zizania1
4莲藕莲属Nelumbo1
5菱角菱属Trapa2
6慈姑慈姑属Sagittaria3
7莼菜莼菜属Brasenia1
8水芹水芹属Oenanthe6
9蕹菜番薯属Ipomoea4
10芡实芡属Euryale1
Table 1 List of aquatic vegetable crops

变量

Variable

描述

Description

单位

Unit

Bio1年平均温度
Bio2昼夜温差月均值
Bio3等温性
Bio4温度季节变化
Bio5最热月份最高温
Bio6最冷月份最低温
Bio7年温度变化范围
Bio8最湿季节平均温度
Bio9最干季节平均温度
Bio10最热季节平均温度
Bio11最冷季节平均温度
Bio12年均降水量mm
Bio13最湿月份降水量mm
Bio14最干月份降水量mm
Bio15降水量的季节性变异系数
Bio16最湿季节降水量mm
Bio17最干季节降水量mm
Bio18最热季节降水量mm
Bio19最冷季节降水量mm
Table 2 19 environmental climate variables and their descriptions

物种

Species

AUC值

AUC value

物种

Species

AUC值

AUC value

荸荠 Eleocharis dulcis0.944Nelumbo nucifera0.923
单鳞苞荸荠 Eleocharis uniglumis0.824欧菱 Trapa natans0.806
渐尖穗荸荠 Eleocharis attenuata0.944细果野菱 Trapa incisa0.861
具槽秆荸荠 Eleocharis valleculosa0.923矮慈姑 Sagittaria pygmaea0.893
龙师草 Eleocharis tetraquetra0.939浮叶慈姑 Sagittaria natans0.942
卵穗荸荠 Eleocharis ovata0.859慈姑 Sagittaria trifolia0.877
密花荸荠 Eleocharis congesta0.906芡实 Euryale ferox0.890
牛毛毡 Eleocharis yokoscensis0.935莼菜 Brasenia schreberi0.893
乳头基荸荠 Eleocharis mamillata0.950短辐水芹 Oenanthe benghalensis0.869
少花荸荠 Eleocharis quinqueflora0.940线叶水芹 Oenanthe linearis0.950
透明鳞荸荠 Eleocharis pellucida0.974高山水芹 Oenanthe hookeri0.958
云南荸荠 Eleocharis yunnanensis0.972水芹 Oenanthe javanica0.900
沼泽荸荠 Eleocharis palustris0.654蒙自水芹 Oenanthe linearis0.961
紫果蔺 Eleocharis atropurpurea0.990多裂叶水芹 Oenanthe thomsonii0.939
假芋 Colocasia fallax0.949蕹菜 Ipomoea aquatica0.942
野芋 Colocasia antiquorum0.942五爪金龙 Ipomoea cairica0.983
Colocasia esculenta0.942小心叶薯 Ipomoea obscura0.989
Zizania latifolia0.882厚藤 Ipomoea pes-caprae0.990
Table 3 Accuracy of predictions for the distribution of wild relatives of aquatic vegetable crops simulated by the MaxEnt model in 1970—2000
Fig. 1 Distribution probability maps of wild relatives of aquatic vegetable crops in 1970—2000
Fig. 2 Distribution map of diversity hotspots of wild relatives of aquatic vegetable crops in 1970—2000 (unweighted absolute value)
Fig. 3 Distribution map of diversity hotspots of wild relatives of aquatic vegetable crops in 1970—2000 (weighted relative value)

物种数量1)

Number of species1)

区域面积 Area size/104 km2
1970—20002060—2080
[0, 2.0)781.485699.417
[2.0, 2.5)63.57748.695
[2.5, 3.0)72.22950.268
[3.0, 3.5)34.215104.667
≥3.58.49356.953
Table 4 Area sizes of diversity hotspots of wild relatives of aquatic vegetable crops in various periods
Fig. 4 Distribution map of diversity hotspots of wild relatives of aquatic vegetable crops under the SSP2-4.5 scenario in 2060—2080 (weighted relative value)
[1]   柯卫东,黄新芳,李建洪,等.我国水生蔬菜科研与生产发展概况[J].长江蔬菜,2015(14):33-37.
KE W D, HUANG X F, LI J H, et al. Overview of the development of scientific research and production of aquatic vegetables in China[J]. Journal of Changjiang Vegetables, 2015(14): 33-37. (in Chinese)
[2]   江解增,曹碚生.水生蔬菜品种类型及其产品利用[J].中国食物与营养,2005(9):21-24. DOI:10.3969/j.issn.1006-9577.2005.09.006
JIANG J Z, CAO B S. Types of aquatic vegetable species and their product utilization[J]. Food and Nutrition in China, 2005(9): 21-24. (in Chinese)
doi: 10.3969/j.issn.1006-9577.2005.09.006
[3]   潘艳,袁靖.新石器时代至先秦时期长江下游的生业形态研究(上)[J].南方文物,2018(4):111-125. DOI:10.3969/j.issn.1004-6275.2018.04.015
PAN Y, YUAN J. Study on living and working forms from neolithic to pre-Qin periods in the lower reaches of Yangtze River (PartⅠ)[J]. Cultural Relics in Southern China, 2018(4): 111-125. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-6275.2018.04.015
[4]   COHEN D J. The beginnings of agriculture in China[J]. Current Anthropology, 2011, 52(): S273-S293. DOI: 10.1086/659965
doi: 10.1086/659965
[5]   邢湘臣.关于“莲的起源地”考证[J].农业考古,1983(2):248-250.
XING X C. Textual research on “the origin of lotus”[J]. Agricultural Archaeology, 1983(2): 248-250. (in Chinese)
[6]   吴曼,宗义湘,赵帮宏,等.中国水生蔬菜产业发展现状、存在问题及发展思路[J].长江蔬菜,2019(2):35-41. DOI:10.3865/j.issn.1001-3547.2019.02.013
WU M, ZONG Y X, ZHAO B H, et al. Development status, problems and development ideas of aquatic vegetables industry in China[J]. Journal of Changjiang Vegetables, 2019(2): 35-41. (in Chinese with English abstract)
doi: 10.3865/j.issn.1001-3547.2019.02.013
[7]   冯凯,赵书平,吴鹏,等.水生蔬菜种业发展现状及建议[J].江苏农业科学,2022,50(18):245-249. DOI:10.15889/j.issn.1002-1302.2022.18.037
FENG K, ZHAO S P, WU P, et al. Present situation and suggestion of aquatic vegetable seed industry development[J]. Jiangsu Agricultural Sciences, 2022, 50(18): 245-249. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2022.18.037
[8]   王立浩,方智远,杜永臣,等.我国蔬菜种业发展战略研究[J].中国工程科学,2016,18(1):123-136. DOI:10.15302/J-CESS-2016015
WANG L H, FANG Z Y, DU Y C, et al. Study on development strategy of vegetable seed industry in China[J]. Strategic Study of CAE, 2016, 18(1): 123-136. (in Chinese with English abstract)
doi: 10.15302/J-CESS-2016015
[9]   HAJJAR R, HODGKIN T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years[J]. Euphytica, 2007, 156(1/2): 1-13. DOI: 10.1007/s10681-007-9363-0
doi: 10.1007/s10681-007-9363-0
[10]   赵耀,李耕耘,杨继.栽培植物野生近缘种的保护与利用[J].生物多样性,2018,26(4):414-426. DOI:10.17520/biods.2018029
ZHAO Y, LI G Y, YANG J. Conservation and utilization of wild relatives of cultivated plants[J]. Biodiversity Science, 2018, 26(4): 414-426. (in Chinese with English abstract)
doi: 10.17520/biods.2018029
[11]   王海平,宋江萍,张晓辉,等.蔬菜等重要经济作物珍稀濒危种质资源现状及保护策略[J].科技导报,2023,41(4):14-22. DOI:10.3981/j.issn.1000-7857.2023.04.002
WANG H P, SONG J P, ZHANG X H, et al. Current situation and protection strategy of rare and endangered germplasm resources of main economic crops[J]. Science & Technology Review, 2023, 41(4): 14-22. (in Chinese with English abstract)
doi: 10.3981/j.issn.1000-7857.2023.04.002
[12]   李伟.我国水生植物多样性保护的研究与实践[J].人民长江,2020,51(1):104-112. DOI:10.16232/j.cnki.1001-4179.2020.01.016
LI W. Research and practice of aquatic plant diversity conservation in China[J]. Yangtze River, 2020, 51(1): 104-112. (in Chinese with English abstract)
doi: 10.16232/j.cnki.1001-4179.2020.01.016
[13]   王述民,李立会,黎裕,等.中国粮食和农业植物遗传资源状况报告(Ⅰ)[J].植物遗传资源学报,2011,12(1):1-12. DOI:10.13430/j.cnki.jpgr.2011.01.004
WANG S M, LI L H, LI Y, et al. Status of plant genetic resources for food and agricultural in China(Ⅰ)[J]. Journal of Plant Genetic Resources, 2011, 12(1): 1-12. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2011.01.004
[14]   朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性,2013,21(1):90-98. DOI:10.3724/SP.J.1003.2013.09106
ZHU G P, LIU G Q, BU W J, et al. Ecological niche modeling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1): 90-98. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2013.09106
[15]   吴霖东,李婷婷,傅国林,等.极小种群野生植物浙江安息香的生态位和种间关系[J].浙江大学学报(农业与生命科学版),2020,46(4):459-474. DOI:10.3785/j.issn.1008-9209.2019.08.263
WU L D, LI T T, FU G L, et al. Niche and interspecific relationship of the wild plant Styrax zhejiangensis with extremely small population[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 459-474. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.08.263
[16]   张海涛,罗渡,牟希东,等.应用多个生态位模型预测福寿螺在中国的潜在适生区[J].应用生态学报,2016,27(4):1277-1284. DOI:10.13287/j.1001-9332.201604.027
ZHANG H T, LUO D, MU X D, et al. Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1277-1284. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201604.027
[17]   PEARSON R G, RAXWORTHY C J, NAKAMURA M, et al. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2007, 34(1): 102-117. DOI: 10.1111/j.1365-2699.2006.01594.x
doi: 10.1111/j.1365-2699.2006.01594.x
[18]   PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026
doi: 10.1016/j.ecolmodel.2005.03.026
[19]   杜倩,魏晨辉,梁陈涛,等.中国东北地区12个建群树种对气候变化响应的MaxEnt模型分析[J].生态学报,2022,42(23):9712-9725. DOI:10.5846/stxb202107312084
DU Q, WEI C H, LIANG C T, et al. Future climatic adaption of 12 dominant tree species in Northeast China under 3 climatic scenarios by using MaxEnt modeling[J]. Acta Ecologica Sinica, 2022, 42(23): 9712-9725. (in Chinese with English abstract)
doi: 10.5846/stxb202107312084
[20]   VINCENT H, AMRI A, CASTAÑEDA-ÁLVAREZ N P, et al. Modeling of crop wild relative species identifies areas globally for in situ conservation[J]. Communications Biology, 2019, 2: 136. DOI: 10.1038/s42003-019-0372-z
doi: 10.1038/s42003-019-0372-z
[21]   武晓宇,董世魁,刘世梁,等.基于MaxEnt模型的三江源区草地濒危保护植物热点区识别[J].生物多样性,2018,26(2):138-148. DOI:10.17520/biods.2017188
WU X Y, DONG S K, LIU S L, et al. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model[J]. Biodiversity Science, 2018, 26(2): 138-148. (in Chinese with English abstract)
doi: 10.17520/biods.2017188
[22]   唐中海,罗华林,王建华,等.基于GIS和Maxent模型的白唇鹿(Cervus albirostris)潜在适宜生境及保护GAP分析[J].生态学报,2022,42(22):9394-9403. DOI:10.5846/stxb202106071503
TANG Z H, LUO H L, WANG J H, et al. Potential suitable habitat and protection gap analysis of white-lipped deer (Cervus albirostris) based on GIS and Maxent model[J]. Acta Ecologica Sinica, 2022, 42(22): 9394-9403. (in Chinese with English abstract)
doi: 10.5846/stxb202106071503
[23]   肖祺,刘成,徐梦珍,等.基于MaxEnt模型的怒江金丝猴潜在适生区预测[J].中国水利水电科学研究院学报(中英文),2022,20(6):557-564. DOI:10.13244/j.cnki.jiwhr.20220101
XIAO Q, LIU C, XU M Z, et al. Prediction of potential suitable area of Rhinopithecus strykeri based on MaxEnt model[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(6): 557-564. (in Chinese with English abstract)
doi: 10.13244/j.cnki.jiwhr.20220101
[24]   崔相艳,王文娟,杨小强,等.基于生态位模型预测野生油茶的潜在分布[J].生物多样性,2016,24(10):1117-1128. DOI:10.17520/biods.2016164
CUI X Y, WANG W J, YANG X Q, et al. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J]. Biodiversity Science, 2016, 24(10): 1117-1128. (in Chinese with English abstract)
doi: 10.17520/biods.2016164
[25]   唐自豪,刘贤安,彭培好,等.末次冰盛期以来香果树潜在地理分布格局变迁[J].生态学报,2023,43(8):3339-3347. DOI:10.5846/stxb202007041741
TANG Z H, LIU X A, PENG P H, et al. Prediction of potential geographical distribution patterns of Emmenopterys henryi since the Last Glacial Maximum[J]. Acta Ecologica Sinica, 2023, 43(8): 3339-3347. (in Chinese with English abstract)
doi: 10.5846/stxb202007041741
[26]   李宏群,李宇轩,刘晓莉,等.基于Maxent生态位模型的水葫芦在中国的适生区预测[J].生态科学,2018,37(3):143-147. DOI:10.14108/j.cnki.1008-8873.2018.03.019
LI H Q, LI Y X, LIU X L, et al. Prediction of potential distribution for water hyacinth in China by using Maxant ecologic niche model[J]. Ecological Science, 2018, 37(3): 143-147. (in Chinese with English abstract)
doi: 10.14108/j.cnki.1008-8873.2018.03.019
[27]   吕彤,郭倩,丁永霞,等.基于MaxEnt模型预测未来气候变化情景下中国区域水稻潜在适生区的变化[J].中国农业气象,2022,43(4):262-275. DOI:10.3969/j.issn.1000-6362.2022.04.002
LÜ T, GUO Q, DING Y X, et al. Predicting potential suitable planting area of rice in China under future climate change scenarios using the MaxEnt model[J]. Chinese Journal of Agrometeorology, 2022, 43(4): 262-275. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6362.2022.04.002
[28]   FICK S E, HIJMANS R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. Inter-national Journal of Climatology, 2017, 37(12): 4302-4315. DOI: 10.1002/joc.5086
doi: 10.1002/joc.5086
[29]   LYNN J, PEEVA N. Communications in the IPCC’s Sixth Assessment Report cycle[J]. Climatic Change, 2021, 169: 18. DOI: 10.1007/s10584-021-03233-7
doi: 10.1007/s10584-021-03233-7
[30]   RADOSAVLJEVIC A, ANDERSON R P. Making better Maxent models of species distributions: complexity, overfitting and evaluation[J]. Journal of Biogeography, 2014, 41(4): 629-643. DOI: 10.1111/jbi.12227
doi: 10.1111/jbi.12227
[31]   赵懿.基于生态位模型预测不同气候情景下的杉木潜在适生区[D].长沙:中南林业科技大学,2022. DOI:10.1016/j.ecoinf.2021.101393
ZHAO Y. Predicting potential suitable habitats of Chinese fir under different climatic scenarios based on ecological niche models[D]. Changsha: Central South University of Forestry & Technology, 2022. (in Chinese with English abstract)
doi: 10.1016/j.ecoinf.2021.101393
[32]   罗玫,王昊,吕植.使用大熊猫数据评估Biomod2和MaxEnt分布预测模型的表现[J].应用生态学报,2017,28(12):4001-4006. DOI:10.13287/j.1001-9332.201712.011
LUO M, WANG H, LÜ Z. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 4001-4006. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.201712.011
[33]   PHILLIPS S J, ANDERSON R P, DUDÍK M, et al. Opening the black box: an open-source release of Maxent[J]. Ecography, 2017, 40(7): 887-893. DOI: 10.1111/ecog.03049
doi: 10.1111/ecog.03049
[34]   赵耀,陈家宽.长江流域农作物起源及其与生物多样性特征的关联[J].生物多样性,2018,26(4):333-345. DOI:10.17520/biods.2017251
ZHAO Y, CHEN J K. The origin of crops in the Yangtze River Basin and its relevance for biodiversity[J]. Biodiversity Science, 2018, 26(4): 333-345. (in Chinese with English abstract)
doi: 10.17520/biods.2017251
[35]   ZHOU Y D, QIAN H, XIAO K Y, et al. Geographic patterns and environmental correlates of taxonomic and phylogenetic diversity of aquatic plants in China[J]. Journal of Systematics and Evolution, 2023, 61(6): 979-989. DOI: 10.1111/jse.12939
doi: 10.1111/jse.12939
[36]   ZHOU Y D, QIAN H, JIN Y, et al. Geographic patterns of taxonomic and phylogenetic β-diversity of aquatic angios-perms in China[J]. Plant Diversity, 2022, 45(2): 177-184. DOI: 10.1016/j.pld.2022.12.006
doi: 10.1016/j.pld.2022.12.006
[37]   牛自耕.基于全球气候模式的中国1981—2100年极端气候事件预估与分析[D].武汉:中国地质大学,2022.
NIU Z G. Projections in extreme climate events in China during 1981—2100 based on global climate models[D]. Wuhan: China University of Geosciences, 2022. (in Chinese with English abstract)
[38]   BURKE M, HSIANG S M, MIGUEL E. Global non-linear effect of temperature on economic production[J]. Nature, 2015, 527(7577): 235-239. DOI: 10.1038/nature15725
doi: 10.1038/nature15725
[39]   赵文飞,宗路平,王梦君.中国自然保护区空间分布特征研究[J].生态学报.2024,44(7):1-14.
ZHAO W F, ZONG L P, WANG M J. Spatial distribution of nature reserves in China[J]. Acta Ecologica Sinica, 2024, 44(7): 1-14. (in Chinese with English abstract)
[40]   郝韵,吕军.我国东部典型农业流域河流氮输出对人类活动和气象因子的响应[J].浙江大学学报(农业与生命科学版),2022,48(5):605-613. DOI:10.3785/j.issn.1008-9209.2021.10.122
HAO Y, LÜ J. Response of riverine nitrogen export to human activities and meteorological factors in a typical agricultural watershed of eastern China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 605-613. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2021.10.122
[41]   高江波,焦珂伟,吴绍洪.1982—2013年中国植被NDVI空间异质性的气候影响分析[J].地理学报,2019,74(3):534-543. DOI:10.11821/dlxb201903010
GAO J B, JIAO K W, WU S H. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982—2013[J]. Acta Geographica Sinica, 2019, 74(3): 534-543. (in Chinese with English abstract)
doi: 10.11821/dlxb201903010
[1] Fangming JIANG,Zhihong XU,Jianfeng WANG,Shixue YOU,Shaoze SHEN,Qing CEN,Jingsong DENG. Identification and zoning of complex ecological functions in territorial space: a case study of Huzhou City of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 227-239.
[2] DONG Xu1, CHEN Xiuzhi2, LOU Yuxia1, GUO Shuiliang1*. Prediction of potential invasion range of alien plant Peperomia pellucida in China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(6): 621-628.