Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 1-11    DOI: 10.3785/j.issn.1008-9209.2023.05.081
Young Scientist Forum     
Advances in animal models and treatment of dilated cardiomyopathy
Jiamin JIN,Qian GONG,Lenan ZHUANG()
College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(940KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Dilated cardiomyopathy (DCM) is a cardiovascular disease characterized by one or both ventricular dilation and systolic dysfunction. Its pathogenesis involves inherited genetic mutations and various secondary factors. Human DCM animal models have been developed using a variety of experimental animals such as mice, rats, zebrafish, and pigs, and are generally constructed by gene editing, drug induction, autoimmune deficiency induction, and viral infection. The previous studies have utilized DCM animal models to thoroughly investigate the pathogenic mechanisms and therapeutic targets of this disease. This paper briefly described the pathological features, clinical symptoms, and epidemiological characteristics of human DCM. Furthermore, it reviewed the types of DCM animal models and their construction methods used in recent years. This paper also presented new perspectives on optimizing modeling methods and promoting therapeutic research for DCM. Therapeutic studies based on DCM animal models can help us better understand the mechanisms of DCM and provide a basis for the development of new therapeutic approaches.



Key wordsdilated cardiomyopathy      animal models of disease      biological therapy      gene editing     
Received: 08 May 2023      Published: 02 March 2024
CLC:  S85  
Corresponding Authors: Lenan ZHUANG     E-mail: zhuangln@zju.edu.cn
Cite this article:

Jiamin JIN,Qian GONG,Lenan ZHUANG. Advances in animal models and treatment of dilated cardiomyopathy. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 1-11.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.05.081     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/1


扩张型心肌病动物模型及治疗的研究进展

扩张型心肌病(dilated cardiomyopathy, DCM)是一类以一侧或双侧心室扩张和收缩功能障碍为特征的心血管疾病,发病原因包括遗传性的基因突变及多种继发因素。人类DCM动物模型涉及小鼠、大鼠、斑马鱼、猪等多种实验动物,一般通过基因编辑、药物诱导、自身免疫缺陷诱导、病毒感染等方法构建。借助DCM动物模型,研究者对该病的致病机制和治疗靶点进行了深入的研究。本文简述了人类DCM的病理特征、临床症状和流行病学特征,对近年来DCM动物模型的种类和构建方法进行了综述,并对优化造模方法与推动治疗研究提出了新的展望。基于DCM动物模型的治疗研究可以帮助我们更好地理解DCM的发生机制,为开发新的治疗方法提供依据。


关键词: 扩张型心肌病,  疾病动物模型,  生物治疗,  基因编辑 
Fig. 1 DCM animal models

物种

Species

细胞类型

Cell type

靶基因

Target gene

修复途径

Repair pathway

小鼠 Mouse胚胎LmnaNexnTbx5CRISPR/Cas9系统、同源定向修复
小鼠 Mouse未知Sorbs2Jarid2FlncBag3NexnOrai1Orai3SrfCap2Cre-LoxP系统
小鼠 Mouse多能干细胞Bag3Cre-LoxP系统
小鼠 Mouse胚胎干细胞Nmrk2同源定向修复
斑马鱼 Zebrafish胚胎bag3吗啉代介导的基因敲除技术
果蝇 Drosophila未知StimOraiRNA干扰技术
猪 Pig胚胎成纤维细胞RBM20TALEN技术、同源定向修复
Table 1 Cell types and organisms of gene edited DCM animal models
Fig. 2 Three treatment pathways for DCM
[34]   JIN B, SHI H M, ZHU J, et al. Up-regulating autophagy by targeting the mTOR-4EBP1 pathway: a possible mechanism for improving cardiac function in mice with experimental dilated cardiomyopathy[J]. BMC Cardiovascular Disorders, 2020, 20: 56. DOI: 10.1186/s12872-020-01365-9
doi: 10.1186/s12872-020-01365-9
[35]   WU J, SUN P, CHEN Q, et al. Metabolic reprogramming orchestrates CD4+ T-cell immunological status and restores cardiac dysfunction in autoimmune induced-dilated cardiomyo-pathy mice[J]. Journal of Molecular and Cellular Cardiology, 2019, 135: 134-148. DOI: 10.1016/j.yjmcc.2019.08.002
doi: 10.1016/j.yjmcc.2019.08.002
[36]   KONG Q, GU J P, LU R H, et al. NMR-based metabolomic analysis of cardiac tissues clarifies molecular mechanisms of CVB3-induced viral myocarditis and dilated cardiomyopathy[J]. Molecules, 2022, 27(18): 6115. DOI: 10.3390/molecules27186115
doi: 10.3390/molecules27186115
[37]   ZHANG Y, ZHOU X B, CHEN S Y, et al. Immune mechanisms of group B coxsackievirus induced viral myocarditis[J]. Virulence, 2023, 14(1): 2180951. DOI: 10.1080/21505594.2023.2180951
doi: 10.1080/21505594.2023.2180951
[38]   ZHAO Y R, LI H P, DU H Z, et al. A Kaposi’s sarcoma-associated herpes virus-encoded microRNA contributes to dilated cardiomyopathy[J]. Signal Transduction and Targeted Therapy, 2023, 8: 226. DOI: 10.1038/s41392-023-01434-3
doi: 10.1038/s41392-023-01434-3
[39]   PIEDALLU O, DEVOS P, MOUGENOT N, et al. AAV-driven human BAG3 overexpression unexpectedly exacerbate heart failure in a LMNAH222P DCM mice model[J]. Archives of Cardiovascular Diseases Supplements, 2022, 14(2): 192. DOI: 10.1016/j.acvdsp.2022.04.082
doi: 10.1016/j.acvdsp.2022.04.082
[40]   ZHANG C, ZHOU Y, LAI X, et al. Human umbilical cord mesenchymal stem cells alleviate myocardial endothelial-mesenchymal transition in a rat dilated cardiomyopathy model[J]. Transplantation Proceedings, 2019, 51(3): 936-941. DOI: 10.1016/j.transproceed.2019.01.080
doi: 10.1016/j.transproceed.2019.01.080
[41]   CHEN Q Q, ZENG Y, YANG X L, et al. Resveratrol ameliorates myocardial fibrosis by regulating Sirt1/Smad3 deacetylation pathway in rat model with dilated cardiomyo-pathy[J]. BMC Cardiovascular Disorders, 2022, 22: 17. DOI: 10.1186/s12872-021-02401-y
doi: 10.1186/s12872-021-02401-y
[42]   DOS SANTOS COUTINHO E SILVA R, ZANONI F L, SIMAS R, et al. Effect of bilateral sympathectomy in a rat model of dilated cardiomyopathy induced by doxorubicin[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 160(3): e135-e144. DOI: 10.1016/j.jtcvs.2019.09.031
doi: 10.1016/j.jtcvs.2019.09.031
[43]   PANG X F, LIN X, DU J J, et al. LTBP2 knockdown by siRNA reverses myocardial oxidative stress injury, fibrosis and remodelling during dilated cardiomyopathy[J]. Acta Physiologica, 2020, 228(3): e13377. DOI: 10.1111/apha.13377
doi: 10.1111/apha.13377
[1]   RAMPERSAUD E, KINNAMON D D, HAMILTON K, et al. Common susceptibility variants examined for association with dilated cardiomyopathy[J]. Annals of Human Genetics, 2010, 74(2): 110-116. DOI: 10.1111/j.1469-1809.2010.00566.x
doi: 10.1111/j.1469-1809.2010.00566.x
[2]   WERNER S, WALLUKAT G, BECKER N P, et al. The aptamer BC 007 for treatment of dilated cardiomyopathy: evaluation in Doberman pinschers of efficacy and outcomes[J]. ESC Heart Failure, 2020, 7(3): 844-855. DOI: 10.1002/ehf2.12628
doi: 10.1002/ehf2.12628
[44]   DIOFANO F, WEINMANN K, SCHNEIDER I, et al. Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency[J]. PLoS Genetics, 2020, 16(11): e1009088. DOI: 10.1371/journal.pgen.1009088
doi: 10.1371/journal.pgen.1009088
[45]   KAMEL S M, VAN OPBERGEN C J M, KOOPMAN C D, et al. Istaroxime treatment ameliorates calcium dysregulation in a zebrafish model of phospholamban R14del cardiomyopathy[J]. Nature Communications, 2021, 12: 7151. DOI: 10.1038/s41467-021-27461-8
doi: 10.1038/s41467-021-27461-8
[46]   TRUJILLO A S, HSU K H, PUTHAWALA J, et al. Myosin dilated cardiomyopathy mutation S532P disrupts actomyosin interactions, leading to altered muscle kinetics, reduced locomotion, and cardiac dilation in Drosophila [J]. Molecular Biology of the Cell, 2021, 32(18): 1690-1706. DOI: 10.1091/mbc.E21-02-0088
doi: 10.1091/mbc.E21-02-0088
[47]   PETERSEN C E, WOLF M J, SMYTH J T. Suppression of store-operated calcium entry causes dilated cardiomyopathy of the Drosophila heart[J]. Biology Open, 2020, 9(3): bio049999. DOI: 10.1242/bio.049999
doi: 10.1242/bio.049999
[48]   STEPHENS E H, TIMEK T A, DAUGHTERS G T, et al. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy[J]. Circulation, 2009, 120(): S112-S119. DOI: 10.1161/CIRCULATIONAHA.108.844159
doi: 10.1161/CIRCULATIONAHA.108.844159
[49]   ISHIKAWA K. Experimental Models of Cardiovascular Diseases: Methods and Protocols[M]. New York: Springer New York, 2018. DOI: 10.1007/978-1-4939-8597-5
doi: 10.1007/978-1-4939-8597-5
[50]   SCHNEIDER J W, OOMMEN S, QURESHI M Y, et al. Dysregulated ribonucleoprotein granules promote cardiomyo-pathy in RBM20 gene-edited pigs[J]. Nature Medicine, 2020, 26(11): 1788-1800. DOI: 10.1038/s41591-020-1087-x
doi: 10.1038/s41591-020-1087-x
[51]   TALAVERA J, GIRALDO A, FERNÁNDEZ-DEL-PALACIO M J, et al. An upgrade on the rabbit model of anthracycline-induced cardiomyopathy: shorter protocol, reduced mortality, and higher incidence of overt dilated cardiomyopathy[J]. BioMed Research International, 2015, 2015: 465342. DOI: 10.1155/2015/465342
doi: 10.1155/2015/465342
[52]   HARE J M, FISHMAN J E, GERSTENBLITH G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial[J]. JAMA, 2012, 308(22): 2369-2379. DOI: 10.1001/jama.2012.25321
doi: 10.1001/jama.2012.25321
[53]   BAN K W, PARK H J, KIM S S, et al. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair[J]. ACS Nano, 2014, 8(10): 10815-10825. DOI: 10.1021/nn504617g
doi: 10.1021/nn504617g
[54]   KOUDSTAAL S, JANSEN OF LORKEERS S J, GAETANI R, et al. Concise review: heart regeneration and the role of cardiac stem cells[J]. Stem Cells Translational Medicine, 2013, 2(6): 434-443. DOI: 10.5966/sctm.2013-0001
doi: 10.5966/sctm.2013-0001
[55]   HIRAI K, OUSAKA D, FUKUSHIMA Y, et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy[J]. Science Translational Medicine, 2020, 12(573): eabb3336. DOI: 10.1126/scitranslmed.abb3336
doi: 10.1126/scitranslmed.abb3336
[56]   GROSCH M, SCHRAFT L, CHAN A, et al. Striated muscle-specific base editing enables correction of mutations causing dilated cardiomyopathy[J]. Nature Communications, 2023, 14: 3714. DOI: 10.1038/s41467-023-39352-1
doi: 10.1038/s41467-023-39352-1
[57]   WEINTRAUB R G, SEMSARIAN C, MACDONALD P. Dilated cardiomyopathy[J]. The Lancet, 2017, 390(10092): 400-414. DOI: 10.1016/S0140-6736(16)31713-5
doi: 10.1016/S0140-6736(16)31713-5
[58]   WESS G, WALLUKAT G, FRITSCHER A, et al. Doberman pinschers present autoimmunity associated with functional autoantibodies: a model to study the autoimmune background of human dilated cardiomyopathy[J]. PLoS ONE, 2019, 14(7): e0214263. DOI: 10.1371/journal.pone.0214263
doi: 10.1371/journal.pone.0214263
[59]   HENLEY M J, KOEHLER A N. Advances in targeting ‘undruggable’ transcription factors with small molecules[J]. Nature Reviews Drug Discovery, 2021, 20(9): 669-688. DOI: 10.1038/s41573-021-00199-0
doi: 10.1038/s41573-021-00199-0
[60]   PANG S, DONG W, LIU N, et al. Diallyl sulfide protects against dilated cardiomyopathy via inhibition of oxidative stress and apoptosis in mice[J]. Molecular Medicine Reports, 2021, 24(6): 852. DOI: 10.3892/mmr.2021.12492
doi: 10.3892/mmr.2021.12492
[61]   YEREBAKAN C, BOLTZE J, ELMONTASER H, et al. Effects of pulmonary artery banding in doxorubicin-induced left ventricular cardiomyopathy[J]. The Journal of Thoracic and Cardiovascular Surgery, 2019, 157(6): 2416-2428.e4. DOI: 10.1016/j.jtcvs.2019.01.138
doi: 10.1016/j.jtcvs.2019.01.138
[62]   ISAKA M, HAYASHIDA R, TAMASHIMA Y, et al. Surgical ventricular restoration for rabbit dilated cardiomyopathy model: preliminary study[J]. Research in Veterinary Science, 2021, 136: 373-376. DOI: 10.1016/j.rvsc.2021.03.023
doi: 10.1016/j.rvsc.2021.03.023
[63]   MOHIUDDIN M M, SINGH A K, SCOBIE L, et al. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report[J]. The Lancet, 2023, 402(10399):397-410. DOI: 10.1016/S0140-6736(23)00775-4
doi: 10.1016/S0140-6736(23)00775-4
[3]   HEINEKE J, WOLLERT K C, OSINSKA H, et al. Calcineurin protects the heart in a murine model of dilated cardiomyopathy[J]. Journal of Molecular and Cellular Cardiology, 2010, 48(6): 1080-1087. DOI: 10.1016/j.yjmcc.2009.10.012
doi: 10.1016/j.yjmcc.2009.10.012
[4]   张百会,侯煜,陈晓春.扩张型心肌病的病因和发病机理的研究进展[J].中西医结合心血管病电子杂志,2016,4(28):17-18. DOI:10.16282/j.cnki.cn11-9336/r.2016.28.011
ZHANG B H, HOU Y, CHEN X C. Advances in the etiology and pathogenesis of dilated cardiomyopathy[J]. Cardiovascular Disease Electronic Journal of Integrated Traditional Chinese and Western Medicine, 2016, 4(28): 17-18. (in Chinese)
doi: 10.16282/j.cnki.cn11-9336/r.2016.28.011
[5]   MØLLER D V, ANDERSEN P S, HEDLEY P, et al. The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy[J]. European Journal of Human Genetics, 2009, 17(10): 1241-1249. DOI: 10.1038/ejhg.2009.34
doi: 10.1038/ejhg.2009.34
[6]   聂宏运,刘小玲,张佳伟,等.扩张型心肌病致病基因及基因多态性研究进展[J].国际心血管病杂志,2022,49(3):129-132. DOI:10.3969/j.issn.1673-6583.2022.03.001
NIE H Y, LIU X L, ZHANG J W, et al. Research progress of pathogenic genes and gene polymorphismsin dilated cardiomyo-pathy[J]. International Journal of Cardiovascular Disease, 2022, 49(3): 129-132. (in Chinese)
doi: 10.3969/j.issn.1673-6583.2022.03.001
[7]   EHSAN M, JIANG H, L.THOMSON K, et al. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies[J]. Journal of Muscle Research and Cell Motility, 2017, 38(3/4): 303-316. DOI: 10.1007/s10974-017-9487-3
doi: 10.1007/s10974-017-9487-3
[8]   CIARAMBINO T, MENNA G, SANSONE G, et al. Cardio-myopathies: an overview[J]. International Journal of Molecular Sciences, 2021, 22(14): 7722. DOI: 10.3390/ijms22147722
doi: 10.3390/ijms22147722
[9]   YANG L Z, SUN J H, CHEN Z, et al. The Lmna p.R541C mutation causes dilated cardiomyopathy in human and mice[J]. International Journal of Cardiology, 2022, 363: 149-158. DOI: 10.1016/j.ijcard.2022.06.038
doi: 10.1016/j.ijcard.2022.06.038
[10]   HOMBURGER F, BAKER J R, NIXON C W, et al. New hereditary disease of Syrian hamsters: primary, generalized polymyopathy and cardiac necrosis[J]. Archives of Internal Medicine, 1962, 110(5): 660-662.
[11]   马宝霞,沈文璐,王旭,等.基因编辑动物模型在人类疾病研究中的应用[J].生物工程学报,2020,36(5):849-860. DOI:10.13345/j.cjb.190395
MA B X, SHEN W L, WANG X, et al. Gene edited animal models applied in human disease research[J]. Chinese Journal of Biotechnology, 2020, 36(5): 849-860. (in Chinese with English abstract)
doi: 10.13345/j.cjb.190395
[12]   REICHART D, LINDBERG E L, MAATZ H, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies[J]. Science, 2022, 377(6606): eabo1984. DOI: 10.1126/science.abo1984
doi: 10.1126/science.abo1984
[13]   CHAFFIN M, PAPANGELI I, SIMONSON B, et al. Single-nucleus profiling of human dilated and hypertrophic cardio-myopathy[J]. Nature, 2022, 608(7921): 174-180. DOI: 10.1038/s41586-022-04817-8
doi: 10.1038/s41586-022-04817-8
[14]   CHUN Y W, MIYAMOTO M, WILLIAMS C H, et al. Impaired reorganization of centrosome structure underlies human infantile dilated cardiomyopathy[J]. Circulation, 2023, 147(17): 1291-1303. DOI: 10.1161/CIRCULATIONAHA.122.060985
doi: 10.1161/CIRCULATIONAHA.122.060985
[15]   MCLENDON J M, ZHANG X M, MATASIC D S, et al. Knockout of sorbin and SH3 domain containing 2 (Sorbs2) in cardiomyocytes leads to dilated cardiomyopathy in mice[J]. Journal of the American Heart Association, 2022, 11(13): e025687. DOI: 10.1161/JAHA.122.025687
doi: 10.1161/JAHA.122.025687
[16]   DOMÍNGUEZ F, LALAGUNA L, MARTÍNEZ-MARTÍN I, et al. Titin missense variants as a cause of familial dilated cardiomyopathy[J]. Circulation, 2023, 147(22): 1711-1713. DOI: 10.1161/CIRCULATIONAHA.122.062833
doi: 10.1161/CIRCULATIONAHA.122.062833
[17]   XIONG Y, BEDI K, BERRITT S, et al. Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset[J]. JCI Insight, 2019, 4(6): e124629. DOI: 10.1172/jci.insight.124629
doi: 10.1172/jci.insight.124629
[18]   CHO E J, KANG H J, KANG D K, et al. Myocardial-specific ablation of Jumonji and AT-rich interaction domain-containing 2 (Jarid2) leads to dilated cardiomyopathy in mice[J]. The Journal of Biological Chemistry, 2019, 294(13): 4981-4996. DOI: 10.1074/jbc.RA118.005634
doi: 10.1074/jbc.RA118.005634
[19]   FENG Y L, CAI L Y, HONG W Z, et al. Rewiring of 3D chromatin topology orchestrates transcriptional reprogramming and the development of human dilated cardiomyopathy[J]. Circulation, 2022, 145(22): 1663-1683. DOI: 10.1161/CIRCULATIONAHA.121.055781
doi: 10.1161/CIRCULATIONAHA.121.055781
[20]   CHIMOSKEY J E, SPIELMAN W S, BRANDT M A, et al. Cardiac atria of BIO 14.6 hamsters are deficient in natriuretic factor[J]. Science, 1984, 223(4638): 820-822.
[21]   BLAIN A M, STRAUB V W. δ-sarcoglycan-deficient muscular dystrophy: from discovery to therapeutic approaches[J]. Skeletal Muscle, 2011, 1(1): 13. DOI: 10.1186/2044-5040-1-13
doi: 10.1186/2044-5040-1-13
[22]   LIU C Z, SPINOZZI S, FENG W, et al. Homozygous G650del nexilin variant causes cardiomyopathy in mice[J]. JCI Insight, 2020, 5(16): e138780. DOI: 10.1172/jci.insight.138780
doi: 10.1172/jci.insight.138780
[23]   MIYAO N, HATA Y, IZUMI H, et al. TBX5 R264K acts as a modifier to develop dilated cardiomyopathy in mice indepen-dently of T-box pathway[J]. PLoS ONE, 2020, 15(4): e0227393. DOI: 10.1371/journal.pone.0227393
doi: 10.1371/journal.pone.0227393
[24]   YANG J, GRAFTON F, RANJBARVAZIRI S, et al. Phenotypic screening with deep learning identifies HDAC6 inhibitors as cardioprotective in a BAG3 mouse model of dilated cardiomyopathy[J]. Science Translational Medicine, 2022, 14(652): eabl5654. DOI: 10.1126/scitranslmed.abl5654
doi: 10.1126/scitranslmed.abl5654
[25]   POWERS J D, KIRKLAND N J, LIU C Z, et al. Subcellular remodeling in filamin C deficient mouse hearts impairs myocyte tension development during progression of dilated cardiomyopathy[J]. International Journal of Molecular Sciences, 2022, 23(2): 871. DOI: 10.3390/ijms23020871
doi: 10.3390/ijms23020871
[26]   YUN H H, JUNG S Y, PARK B W, et al. An adult mouse model of dilated cardiomyopathy caused by inducible cardiac-specific Bis deletion[J]. International Journal of Molecular Sciences, 2021, 22(3): 1343. DOI: 10.3390/ijms22031343
doi: 10.3390/ijms22031343
[27]   SPINOZZI S, LIU C Z, CHEN Z E, et al. Nexilin is necessary for maintaining the transverse-axial tubular system in adult cardiomyocytes[J]. Circulation Heart Failure, 2020, 13(7): e006935. DOI: 10.1161/CIRCHEARTFAILURE.120.006935
doi: 10.1161/CIRCHEARTFAILURE.120.006935
[28]   ANGELINI A, GOREY M A, DUMONT F, et al. Cardio-protective effects of α-cardiac actin on oxidative stress in a dilated cardiomyopathy mouse model[J]. The FASEB Journal, 2020, 34(2): 2987-3005. DOI: 10.1096/fj.201902389R
doi: 10.1096/fj.201902389R
[29]   GAMMONS J, TREBAK M, MANCARELLA S. Cardiac-specific deletion of Orai3 leads to severe dilated cardiomyo-pathy and heart failure in mice[J]. Journal of the American Heart Association, 2021, 10(8): e019486. DOI: 10.1161/JAHA.120.019486
doi: 10.1161/JAHA.120.019486
[30]   TANNOUS C, DELOUX R, KAROUI A, et al. Nmrk2 gene is upregulated in dilated cardiomyopathy and required for cardiac function and NAD levels during aging[J]. Inter-national Journal of Molecular Sciences, 2021, 22(7): 3534. DOI: 10.3390/ijms22073534
doi: 10.3390/ijms22073534
[31]   LIU Y H, ZHANG W F, HU T T, et al. A doxorubicin-induced murine model of dilated cardiomyopathy in vivo [J]. Journal of Visualized Experiments, 2020(159): e61158. DOI: 10.3791/61158
doi: 10.3791/61158
[32]   LIU Y F, JIANG B, CAO Y D, et al. High expression levels and localization of Sox5 in dilated cardiomyopathy[J]. Molecular Medicine Reports, 2020, 22(2): 948-956. DOI: 10.3892/mmr.2020.11180
doi: 10.3892/mmr.2020.11180
[1] Ziyan XU,Hao LI,Huanbin ZHOU,Xueping ZHOU. Research progress on CRISPR/Cas gene editing technology cooperating with plant virus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 709-720.
[2] WANG Shaohua, ZHAO Panpan, LIU Tong, DING Biao, LUO Lei, CAO Zubing, ZHANG Yunhai, ZHANG Kun. Production of porcine reproductive and respiratory syndrome virus (PRRSV)-resistant genomeedited cloned pigs using CRISPR/Cas9n system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 157-161.