Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 729-743    DOI: 10.3785/j.issn.1008-9209.2022.07.071
Animal sciences & veterinary medicines     
Combined analysis of embryonic gonadal development differences of mulard duck and muscovy duck using long non-coding RNAs and mRNAs
Li LI1,2(),Linli ZHANG1,2,Qingwu XIN1,2,Zhongwei MIAO1,2,Zhiming ZHU1,2,Junzhi QIU3,Xiaona HAO4,Qinlou HUANG2(),Nenzhu ZHENG1,2()
1.Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
2.Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, Fujian, China
3.College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
4.College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Download: HTML   HTML (   PDF(3442KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The purpose of this study was to screen key mRNAs and long non-coding RNAs (lncRNAs) that affect gonadal development in duck embryos and to explain scientifically gonadal development defects in the mulard duck. Three male embryonic gonadal tissues of the mulard duck (BF1, BF2, BF3) and the muscovy duck (F1, F2, F3) were collected to extract RNA and perform high-throughput sequencing, and differential genes and lncRNAs were screened to predict target genes and perform functional annotations. Finally, the sequencing data were verified by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The results showed that a total of 1 109 differentially expressed genes were screened from the gonadal tissues of the mulard duck and the muscovy duck. Compared with the muscovy duck, 857 genes were up-regulated and 252 genes were down-regulated in the mulard duck. Among them, the aldo-keto reductase family 1 member D1 gene (AKR1D1), 17β-hydroxysteroid dehydrogenase 3 gene (17β-HSD3), and cholesterol side-chain cleavage enzyme gene (P450scc) may be related to gonadal differentiation and development in the mulard duck. Meanwhile, 733 significantly differentially expressed lncRNAs were obtained. Compared with the muscovy duck, a total of 660 lncRNAs were significantly up-regulated and 73 lncRNAs were significantly down-regulated in the mulard duck. Target gene prediction analysis showed that a total of 136 down-regulated lncRNAs and 893 up-regulated lncRNAs may be involved in differential gene expression and had potential regulatory relationships, among which, TCONS_00246198 targeted 17β-HSD3, and TCONS_00229529 targeted tetraspanin-2 gene (TSPAN2), suggesting that the above lncRNAs may participate in duck embryonic gonadal development by targeting key genes. The qRT-PCR results showed that the expression levels of differential genes and lncRNAs were consistent with the expression trends in transcriptome sequencing, indicating that the data obtained by high-throughput sequencing are relatively reliable. RNA binding protein immunoprecipitation (RIP) assay results revealed that compared with IgG, the enrichment level of TCONS_00246198 reached 71.51 times. The above results indicate that TCONS_00246198 interacts directly or indirectly with the 17β-HSD3 protein, which means that they may have a targeting relationship. In summary, this study obtains a batch of key mRNAs and lncRNAs that may affect duck embryonic gonadal development, and it is speculated that the differential lncRNAs can regulate the expression of differential genes. This study provides a scientific basis for understanding the differences in duck embryonic gonadal development and the mechanisms of avian gonadal development.



Key wordsmulard duck      muscovy duck      gonad      infertility      long non-coding RNAs (lncRNAs)      mRNAs     
Received: 07 July 2022      Published: 03 November 2023
CLC:  S834.89  
Corresponding Authors: Qinlou HUANG,Nenzhu ZHENG     E-mail: 576801792@qq.com;hql202@126.com;zhengnz@163.com
Cite this article:

Li LI,Linli ZHANG,Qingwu XIN,Zhongwei MIAO,Zhiming ZHU,Junzhi QIU,Xiaona HAO,Qinlou HUANG,Nenzhu ZHENG. Combined analysis of embryonic gonadal development differences of mulard duck and muscovy duck using long non-coding RNAs and mRNAs. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 729-743.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.07.071     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/729


利用长链非编码RNAs与mRNAs联合分析半番鸭及番鸭胚胎期性腺发育差异

本研究旨在筛选影响鸭胚胎期性腺发育的关键mRNAs和长链非编码RNAs(long non-coding RNAs, lncRNAs),科学解释半番鸭性腺发育缺陷问题。采集半番鸭(BF1、BF2、BF3)和番鸭(F1、F2、F3)各3个雄性胚胎性腺组织并提取其RNA,通过高通量测序筛选差异基因和lncRNAs,预测靶基因并进行功能注释,最后应用实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction, qRT-PCR)对测序结果进行验证。结果显示:从半番鸭和番鸭性腺组织中共筛选出1 109个差异基因;相对于番鸭,半番鸭中上调表达基因共857个,下调表达基因共252个,其中,醛酮还原酶家族1成员D1基因(aldo-keto reductase family 1 member D1 gene, AKR1D1)、17β-羟基类固醇脱氢酶3基因(17β-hydroxysteroid dehydrogenase 3 gene, 17β-HSD3)和胆固醇侧链裂解酶基因(cholesterol side-chain cleavage enzyme gene, P450scc)等可能与半番鸭性腺分化发育相关。同时,获得了733个显著差异表达的lncRNAs;相对于番鸭,半番鸭中显著上调的lncRNAs共660个,显著下调的lncRNAs共73个。靶基因预测分析显示,136个下调的lncRNAs和893个上调的lncRNAs可能参与差异基因表达并存在潜在的调控关系,其中,TCONS_00246198靶向17β-HSD3,TCONS_00229529靶向四次穿膜蛋白2基因(tetraspanin-2 gene, TSPAN2),说明以上lncRNAs可能通过靶向关键基因来参与鸭胚胎期性腺发育。qRT-PCR结果显示,差异基因和lncRNAs表达水平与转录组测序中的表达趋势一致,表明通过高通量测序获得的数据较为可靠。RNA结合蛋白免疫沉淀(RNA binding protein immunoprecipitation, RIP)试验结果发现,与IgG相比,TCONS_00246198富集水平达71.51倍,表明TCONS_00246198与17β-HSD3蛋白存在直接或间接的相互作用,即两者可能存在靶向关系。综上所述,本研究获得了一批可能影响鸭胚胎期性腺发育的关键mRNAs和lncRNAs,推测差异lncRNAs可以调控差异基因的表达,为了解鸭胚胎期性腺发育差异及禽类性腺发育机制提供了科学依据。


关键词: 半番鸭,  番鸭,  性腺,  不育,  长链非编码RNAs,  mRNAs 

名称

Name

GenBank登录号

GenBank accession No.

引物序列(5→3

Primer sequence (5→3)

扩增长度

Size/bp

退火温度

Annealing temperature/℃

GAPDHXM_005016745.2

F: GGAGCTGCCCAGAACATTATC

R: GCAGGTCAGGTCCACGACA

14160
AKR1D1101802488

F: CGTGTCCTCCCCTCCTTTA

R: CCTCGCTGGATGCTGAAAC

10560
17β-HSD3101799136

F: GGGACTGATCTGTTTCTGTGCT

R: CCATCTCCTGCTCCTGTGA

13860
LOC101794158101794158

F: CCTTTGGCATCGGGATTGGA

R: GCCGGATGACTCTGTTGGA

13860
PTGFRN101794936

F: CACAATGGGAGCTGGCATAAAGT

R: GGTGGGGTCATCTGAAAACTTG

13260
TCONS_00189165XLOC_112996

F: GCTATGAAGAGGAAAAGGGATGTC

R: GCGCTTAAACGAGAGGAACCA

7960
XR_003494977.1106018179

F: GGAACCATAATGTGCCAGCTGAA

R: CCTTGCAGTTGATAAGACGATGGTA

9660
TCONS_00087264101791443

F: GAGCCACAGACACGAAGAGAA

R: GGGGAATCAGTAACCCATAGC

9660
XR_003498542.1113844190

F: GAAGAGGACACCGATCAAGAG

R: GTAACAACCTTCAGCCACTCAAAC

8760
Table 1 qRT-PCR primer sequence information
Fig. 1 Female and male identification of the mulard duck and the muscovy duckbf/BF: Mulard duck; b: Pekin duck; f/F: Muscovy duck; M: DNA marker.

样品

Sample

原始读长

Raw read

高质量读长

Clean read

原始碱基数

Raw base

number/Gb

高质量碱基数

Clean base

number/Gb

Q20/%Q30/%

GC含量

GC content/%

比对读长(比对率)

Mapped read

(mapped rate/%)

BF188 347 43687 273 71213.2513.0998.0194.2549.5366 096 582(75.73)
BF2106 246 148104 905 27015.9415.7497.9794.2549.2077 624 844(74.00)
BF388 259 88287 107 52213.2413.0798.1694.7448.7166 689 926(76.56)
F1106 867 756105 328 09015.5915.8098.1594.7448.7867 180 376(63.78)
F292 794 78291 434 96815.2713.7298.2994.9950.0857 816 779(63.23)
F396 607 49495 297 67015.7014.2998.2995.0949.0661 078 250(64.09)
Table 2 Quality and alignment analysis of sequencing data
Fig. 2 lncRNAs differentially expressed in the mulard duck compared with the muscovy duck

GenBank 登录号

GenBank accession No.

基因名称

Gene name

FPKM值 FPKM valuelog2 (FC)

p

p-value

padj
半番鸭 Mulard duck番鸭 Muscovy duck
101792001THSD430.576 36021.438 52.38×10-238.19×10-19
101805128MACROD223.394 99020.716 15.52×10-243.80×10-19
101792143TSPAN410.613 14020.461 31.06×10-212.44×10-17
101791830RPL7A1 032.393 00020.430 91.73×10-212.98×10-17
101794364PTBP341.773 16019.867 64.27×10-204.91×10-16
101794113TCF414.043 13019.581 08.10×10-206.97×10-16
101790148PRKAR1B21.604 88019.434 57.84×10-206.97×10-16
101 798636BMPR1A30.705 36019.327 01.58×10-191.09×10-15
101799292MXRA783.668 07019.209 64.22×10-192.64×10-15
101803865LOC101803865190.221 80019.199 01.21×10-185.13×10-15
101796808LRP2037.974 58-20.637 31.44×10-71.92×10-5
101790849BBS907.721 36-19.545 72.49×10-73.06×10-5
101803047AUTS202.290 90-19.088 01.13×10-61.06×10-4
101793582TEAD109.605 26-18.878 11.53×10-61.36×10-4
101795217ACTN1012.786 68-18.458 21.95×10-45.97×10-3
101798600SLC4A404.550 25-18.312 77.69×10-65.08×10-4
101803985TBC1D502.929 80-18.191 82.24×10-46.58×10-3
101790849BBS902.916 37-18.165 62.27×10-46.64×10-3
101791925GAK012.974 59-18.117 05.60×10-169.41×10-13
101794936PTGFRN021.933 99-17.955 56.66×10-158.34×10-12
Table 3 Differentially expressed genes at top 10 of fold changes

转录本号

Transcript ID

转录本名称

Transcript name

FPKM值 FPKM valuelog2 (FC)

p

p-value

padj
半番鸭 Mulard duck番鸭 Muscovy duck
TCONS_00036148LOC101796976-OT257.680 6020.229 81.18×10-44.07×10-3
TCONS_00258829LINC4586131.759 7019.484 81.56×10-191.09×10-15
TCONS_00260238LINC464294.465 7018.437 03.71×10-179.82×10-14
TCONS_00258290LOC101805096-OT15.334 5018.284 43.62×10-62.73×10-4
TCONS_00203531LOC113845374-OT57.646 8017.936 79.07×10-151.10×10-11
TCONS_00258785LINC456419.433 6016.873 34.84×10-122.03×10-9
TCONS_00262674LOC113842089-OT114.538 8016.850 83.31×10-132.17×10-10
TCONS_00036199LOC101796281-OT29.120 5016.749 44.36×10-41.07×10-2
XR_003494977.1LOC10601817922.879 7016.701 06.73×10-133.89×10-10
TCONS_00258797LINC457917.896 5016.600 11.55×10-127.73×10-10
TCONS_00032957PHF21B-OT102.490 1-17.482 12.30×10-142.37×10-11
TCONS_00087264ESRRG-OT200.921 4-15.881 61.61×10-104.31×10-8
TCONS_00250319LOC101789623-OT101.653 1-14.860 81.80×10-32.95×10-2
TCONS_00054873TRHR-OT101.634 7-14.786 38.36×10-53.16×10-3
TCONS_00254443LOC113841128-OT601.830 1-14.273 02.08×10-46.24×10-3
TCONS_00254482LINC4324010.620 7-14.202 63.15×10-34.43×10-2
TCONS_00110367APELA-OT103.733 0-13.559 65.12×10-36.24×10-2
TCONS_00200982LINC345200.893 3-13.375 15.94×10-64.11×10-4
TCONS_00153334NR5A2-OT100.515 0-13.217 46.14×10-37.04×10-2
TCONS_00190897LINC333800.230 9-13.158 07.03×10-41.50×10-2
Table 4 Differentially expressed lncRNAs at top 10 of fold changes
Fig. 3 Venn diagram of differential lncRNAs targeting differential mRNAs
Fig. 4 GO enrichment process of differential genes and differential lncRNAs targeting genesA. Differential genes; B. Differential lncRNAs (co-expression); C. Differential lncRNAs (co-location).
Fig.5 KEGG enrichment process of differential genes and differential lncRNAs targeting genes
Fig. 6 Differential genes and lncRNAs in embryonic gonadal tissues of the mulard duck and the muscovy duck verified by qRT-PCR
Fig. 7 Enrichment analysis of lncRNAs TCONS_00246198 by 17β-HSD3 protein
[1]   郑嫩珠,李盛霖,陈晖.福建省白羽半番鸭及其母本选育[J].中国家禽,2010,32(14):5-8. DOI:10.16372/j.issn.1004-6364.2010.14.002
ZHENG N Z, LI S L, CHEN H. White mulard duck and female parent breeding in Fujian Province[J]. China Poultry, 2010, 32(14): 5-8. (in Chinese)
doi: 10.16372/j.issn.1004-6364.2010.14.002
[2]   YOUSEFI H, MAHERONNAGHSH M, MOLAEI F, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance[J]. Oncogene, 2020, 39(5): 953-974. DOI: 10.1038/s41388-019-1040-y
doi: 10.1038/s41388-019-1040-y
[3]   许玉德,智绪华.半番鸭(番鸭 ×家鸭 )雄性不育的辨析[J].厦门大学学报(自然科学版),1998,37(5):763-768.
XU Y D, ZHI X H. Studies on male sterility of hybrid duck[J]. Journal of Xiamen University (Natural Science), 1998, 37(5): 763-768. (in Chinese with English abstract)
[4]   檀俊秩,陈晖,宋建捷,等.半番鸭繁殖性状的研究[J].福建农业学报,1998,13(2):41-45.
TAN J Z, CHEN H, SONG J J, et al. Studies on reproductive character of mule duck[J]. Fujian Journal of Agricultural Sciences, 1998, 13(2): 41-45. (in Chinese with English abstract)
[5]   PENG Y D, CHANG L, WANG Y Q, et al. Genome-wide differential expression of long noncoding RNAs and mRNAs in ovarian follicles of two different chicken breeds[J]. Genomics, 2019, 111(6): 1395-1403. DOI: 10.1016/j.ygeno.2018.09.012
doi: 10.1016/j.ygeno.2018.09.012
[6]   AYERS K L, LAMBETH L S, DAVIDSON N M, et al. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq[J]. BMC Genomics, 2015, 16: 704. DOI: 10.1186/s12864-015-1886-5
doi: 10.1186/s12864-015-1886-5
[7]   REN J D, DU X, ZENG T, et al. Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction[J]. Animal Reproduction Science, 2017, 185: 8-17. DOI: 10.1016/j.anireprosci.2017.07.012
doi: 10.1016/j.anireprosci.2017.07.012
[8]   李丽,缪中纬,辛清武,等.半番鸭与番鸭精巢组织差异表达转录组测序分析[J].中国农业科学,2017,50(18):3608-3619. DOI:10.3864/j.issn.0578-1752.2017.18.016
LI L, MIAO Z W, XIN Q W, et al. Transcriptome analysis of differential gene expression associated with testis tissue in mule duck and muscovy duck[J]. Scientia Agricultura Sinica, 2017, 50(18): 3608-3619. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.18.016
[9]   LI L, ZHANG L L, ZHANG Z H, et al. Comparative transcriptome and histomorphology analysis of testis tissues from mulard and Pekin ducks[J]. Archives Animal Breeding, 2020, 63(2): 303-313. DOI: 10.5194/aab-63-303-2020
doi: 10.5194/aab-63-303-2020
[10]   JIANG J Y, CHEN C, CHENG S Z, et al. Long noncoding RNA LncPGCR mediated by TCF7L2 regulates primordial germ cell formation in chickens[J]. Animals, 2021, 11(2): 292. DOI: 10.3390/ani11020292
doi: 10.3390/ani11020292
[11]   WU Y, XIAO H W, PI J S, et al. LncRNA lnc_13814 promotes the cells apoptosis in granulosa cells of duck by acting as apla-miR-145-4 sponge[J]. Cell Cycle, 2021, 20(9): 927-942. DOI: 10.1080/15384101.2021.1911102
doi: 10.1080/15384101.2021.1911102
[12]   ZUO Q H, JIN J, JIN K, et al. P53 and H3K4me2 activate N6-methylated LncPGCAT-1 to regulate primordial germ cell formation via MAPK signaling[J]. Journal of Cellular Physiology, 2020, 235(12): 9895-9909. DOI: 10.1002/jcp.29805
doi: 10.1002/jcp.29805
[13]   GAO W, ZHANG C, JIN K, et al. Analysis of lncRNA expression profile during the formation of male germ cells in chickens[J]. Animals, 2020, 10(10): 1850. DOI: 10.3390/ani10101850
doi: 10.3390/ani10101850
[14]   LI D, JI Y, WANG F, et al. Regulation of crucial lncRNAs in differentiation of chicken embryonic stem cells to sperma-togonia stem cells[J]. Animal Genetics, 2017, 48(2): 191-204. DOI: 10.1111/age.12510
doi: 10.1111/age.12510
[15]   LI X H, WANG Z, JIANG Z M, et al. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes[J]. PNAS, 2016, 113(10): 2666-2671. DOI: 10.1073/pnas.1519395113
doi: 10.1073/pnas.1519395113
[16]   LO K C, LEI Z M, RAO C V, et al. De novo testosterone production in luteinizing hormone receptor knockout mice after transplantation of Leydig stem cells[J]. Endocrinology, 2004, 145(9): 4011-4015. DOI: 10.1210/en.2003-1729
doi: 10.1210/en.2003-1729
[17]   ZIRKIN B R, PAPADOPOULOS V. Leydig cells: formation, function, and regulation[J]. Biology of Reproduction, 2018, 99(1): 101-111. DOI: 10.1093/biolre/ioy059
doi: 10.1093/biolre/ioy059
[18]   ROBIC A, FARAUT T, PRUNIER A. Pathways and genes involved in steroid hormone metabolism in male pigs: a review and update[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2014, 140: 44-55. DOI: 10.1016/j.jsbmb.2013.11.001
doi: 10.1016/j.jsbmb.2013.11.001
[19]   CHEN M Y, YANG W J, LIU N, et al. Pig Hsdl7b3: alternative splice variants expression, insertion/deletion (indel) in promoter region and their associations with male repro-ductive traits[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2019, 195: 105483. DOI: 10.1016/j.jsbmb.2019.105483
doi: 10.1016/j.jsbmb.2019.105483
[20]   MENDONCA B B, GOMES N L, COSTA E M F, et al. 46, XY disorder of sex development (DSD) due to 17β-hydroxy-steroid dehydrogenase type 3 deficiency[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 165(Pt A): 79-85. DOI: 10.1016/j.jsbmb.2016.05.002
doi: 10.1016/j.jsbmb.2016.05.002
[21]   RHOUMA B B, KALLABI F, MAHFOUDH N, et al. Novel cases of Tunisian patients with mutations in the gene encoding 17β-hydroxysteroid dehydrogenase type 3 and a founder effect[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2017, 165(Pt A): 86-94. DOI: 10.1016/j.jsbmb.2016.03.007
doi: 10.1016/j.jsbmb.2016.03.007
[22]   ENGELI R T, RHOUMA B B, SAGER C P, et al. Biochemical analyses and molecular modeling explain the functional loss of 17β-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY disorders of sex development[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2016, 155(Pt A): 147-154. DOI: 10.1016/j.jsbmb.2015.10.023
doi: 10.1016/j.jsbmb.2015.10.023
[23]   NURLIANI A, SASAKI M, BUDIPITOJO T, et al. An immunohistochemical study on testicular steroidogenesis in the Sunda porcupine (Hystrix javanica)[J]. Journal of Veterinary Medical Science, 2019, 81(9): 1285-1290. DOI: 10.1292/jvms.19-0167
doi: 10.1292/jvms.19-0167
[24]   MENG L H, YU H Y, NI F F, et al. Roles of two cyp11 genes in sex hormone biosynthesis in Japanese flounder (Paralichthys olivaceus)[J]. Molecular Reproduction and Development, 2020, 87(1): 53-65. DOI: 10.1002/mrd.23301
doi: 10.1002/mrd.23301
[25]   LIANG D D, FAN Z F, ZOU Y X, et al. Characteristics of Cyp11a during gonad differentiation of the olive flounder Paralichthys olivaceus [J]. International Journal of Molecular Sciences, 2018, 19(9): 2641. DOI: 10.3390/ijms19092641
doi: 10.3390/ijms19092641
[26]   KASHEF J, DIANA T, OELGESCHLÄGER M, et al. Expression of the tetraspanin family members Tspan3, Tspan4, Tspan5 and Tspan7 during Xenopus laevis embryonic develop-ment[J]. Gene Expression Patterns, 2013, 13(1/2): 1-11. DOI: 10.1016/j.gep.2012.08.001
doi: 10.1016/j.gep.2012.08.001
[27]   RENAULT L, PATIÑO L C, MAGNIN F, et al. BMPR1A and BMPR1B missense mutations cause primary ovarian insufficiency[J]. The Journal of Clinical Endocrinology & Metabolism, 2020, 105(4): dgz226. DOI: 10.1210/clinem/dgz226
doi: 10.1210/clinem/dgz226
[28]   EDSON M A, NALAM R L, CLEMENTI C, et al. Granulosa cell-expressed BMPR1A and BMPR1B have unique functions in regulating fertility but act redundantly to suppress ovarian tumor development[J]. Molecular Endocrinology, 2010, 24(6): 1251-1266. DOI: 10.1210/me.2009-0461
doi: 10.1210/me.2009-0461
[29]   AHMED K, LAPIERRE M P, GASSER E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility[J]. Journal of Clinical Investigation, 2017, 127(3): 1061-1074. DOI: 10.1172/JCI90031
doi: 10.1172/JCI90031
[30]   ZHANG H, YU J Q, YANG L L, et al. Identification of genome-wide SNP-SNP interactions associated with important traits in chicken[J]. BMC Genomics, 2017, 18: 892. DOI: 10.1186/s12864-017-4252-y
doi: 10.1186/s12864-017-4252-y
[31]   SCHINDLER K, SCHULTZ R M. CDC14B acts through FZR1 (CDH1) to prevent meiotic maturation of mouse oocytes[J]. Biology of Reproduction, 2009, 80(4): 795-803. DOI: 10.1095/biolreprod.108.074906
doi: 10.1095/biolreprod.108.074906
[32]   CHÁVEZ B, RAMOS L, GÓMEZ R, et al. 46, XY disorder of sexual development resulting from a novel monoallelic mutation (p.Ser31Phe) in the steroid 5α‐reductase type‐2 (SRD5A2) gene[J]. Molecular Genetics & Genomic Medicine, 2014, 2(4): 292-296. DOI: 10.1002/mgg3.76
doi: 10.1002/mgg3.76
[33]   ITTIWUT C, PRATUANGDEJKUL J, SUPORNSILCHAI V, et al. Novel mutations of the SRD5A2 and AR genes in Thai patients with 46, XY disorders of sex development[J]. Journal of Pediatric Endocrinology & Metabolism, 2017, 30(1): 19-26. DOI: 10.1515/jpem-2016-0048
doi: 10.1515/jpem-2016-0048
[34]   KUMAR A, SHARMA R, FARUQ M, et al. Spectrum of pathogenic variants in SRD5A2 in Indian children with 46, XY disorders of sex development and clinically suspected steroid 5α-reductase 2 deficiency[J]. Sexual Development, 2019, 13(5/6): 228-239. DOI: 10.1159/000509812
doi: 10.1159/000509812
[35]   ATA A, ÖZEN S, ONAY H, et al. A large cohort of disorders of sex development and their genetic characteristics: 6 novel mutations in known genes[J]. European Journal of Medical Genetics, 2021, 64(3): 104154. DOI: 10.1016/j.ejmg.2021.104154
doi: 10.1016/j.ejmg.2021.104154
[36]   ZHANG Y H, CUI Y, ZHANG X L, et al. Pig StAR: mRNA expression and alternative splicing in testis and Leydig cells, and association analyses with testicular morphology traits[J]. Theriogenology, 2018, 118: 46-56. DOI: 10.1016/j.theriogenology.2018.05.031
doi: 10.1016/j.theriogenology.2018.05.031
[37]   ESTIENNE A, REVERCHON M, PARTYKA A, et al. Chemerin impairs in vitro testosterone production, sperm motility, and fertility in chicken: possible involvement of its receptor CMKLR1[J]. Cells, 2020, 9(7): 1599. DOI: 10.3390/cells9071599
doi: 10.3390/cells9071599
[1] ZHANG Wei, ZHANG Junsheng, ZHANG Yao, WANG Lihong. Analysis of gonadotropin releasing hormone receptor gene (GnRHR) expression map in digestive system of Hu sheep[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 387-392.