Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 368-375    DOI: 10.3785/j.issn.1008-9209.2022.07.011
Food sciences     
Fabrication of thymol-loaded polycaprolactone nanofiber membrane for freshness preservation
Rong JIN1(),Zihan CAI2,Yile ZHAO2,Chaoyi SHEN3,Zhichao YANG3,Di WU2,4(),Kunsong CHEN2
1.Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, Henan, China
Download: HTML   HTML (   PDF(6919KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The existing traditional active preservation packaging has disadvantages such as low porosity and poor air permeability, so the fabrication of nano-scale packaging materials that can release slowly and retain freshness is a hot research topic in the field of storage and logistics of postharvest fruits and vegetables. In this study, polycaprolactone (PCL) nanofiber membranes loaded by thymol (THY) were prepared by the solution blow spinning technique, and the properties of THY/PCL nanofiber membranes were evaluated by material characterization and bacterial inhibition experiments. The results showed that the THY/PCL nanofiber membranes had lower crystallinity and increased thermal stability, while their water vapor permeable properties, surface hydrophobicity, and mechanical properties were not affected. In addition, the THY/PCL nanofiber membranes showed good antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating a good application prospect in the field of postharvest preservation of fruits and vegetables.



Key wordssolution blow spinning      nanofiber      thymol      polycaprolactone      fruits and vegetables      antibacterial     
Received: 01 July 2022      Published: 25 June 2023
CLC:  S609.3  
Corresponding Authors: Di WU     E-mail: rong@zju.edu.cn;di_wu@zju.edu.cn
Cite this article:

Rong JIN,Zihan CAI,Yile ZHAO,Chaoyi SHEN,Zhichao YANG,Di WU,Kunsong CHEN. Fabrication of thymol-loaded polycaprolactone nanofiber membrane for freshness preservation. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 368-375.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.07.011     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/368


负载百里酚的聚己内酯纳米纤维膜制备及保鲜应用研究

现有的传统活性保鲜包装存在孔隙率低、透气性差等缺点,因此制备纳米级保鲜控释包装材料是果蔬采后贮藏和物流领域中的研究热点。本研究采用溶液吹塑纺丝技术制备负载百里酚(thymol, THY)的聚己内酯(polycaprolactone, PCL)纳米纤维膜,并通过材料表征和抑菌实验对THY/PCL纳米纤维膜的性能进行评价。结果表明:负载THY后,PCL纳米纤维膜的结晶度降低,热稳定性提高,而水蒸气透过性能、表面疏水性与机械性能未受影响。此外,THY/PCL纳米纤维膜对大肠埃希菌和金黄色葡萄球菌表现出良好的抑菌活性,展现了在果蔬采后保鲜领域良好的应用前景。


关键词: 溶液吹塑纺丝,  纳米纤维,  百里酚,  聚己内酯,  果蔬,  抑菌 
Fig. 1 Scanning electron microscope images of PCL nanofibers
Fig. 2 Fourier transform infrared spectra of THY, THY/PCL, and PCL nanofiber membranes
Fig. 3 X-ray diffraction results of THY (A) and THY/PCL nanofiber membranes (B)
Fig. 4 DSC curve (A) and TGA curves (B-C) of PCL and THY/PCL nanofiber membranes
Fig. 5 Mechanical properties of PCL and THY/PCL nanofiber membranesDifferent or same lowercase letters above bars indicate significant or no significant differences at the 0.05 probability level, respectively, and the same as below.
Fig. 6 Water contact angles of PCL and THY/PCL nanofiber membranes
Fig. 7 Water vapor permeability of PCL and THY/PCL nanofiber membranes
Fig. 8 Antibacterial activity of PCL and THY/PCL nanofiber membranes against S. aureus and E. coli
Fig. 9 Inhibition zone diameters of S. aureus (A) and E. coli (B) under the treatments of PCL and THY/PCL nanofiber membranes
[1]   隋思瑶,王毓宁,马佳佳,等.活性包装技术在果蔬保鲜上的应用研究进展[J].包装工程,2017,38(9):1-6. DOI:10.19554/j.cnki.1001-3563.2017.09.002
SUI S Y, WANG Y N, MA J J, et al. Research advances of application of active packaging technology in preservation of fruits and vegetables[J]. Packaging Engineering, 2017, 38(9): 1-6. (in Chinese with English abstract)
doi: 10.19554/j.cnki.1001-3563.2017.09.002
[2]   杨智超,沈超怡,张辉,等.静电纺丝技术在食品保鲜领域的应用及展望[J].未来食品科学,2021,1(2):1-14. DOI:10.12281/ffs2708-1893-20210326-001
YANG Z C, SHEN C Y, ZHANG H, et al. Review on application and prospect of electrospinning technology in food preservation[J]. Future Food Science, 2021, 1(2): 1-14. (in Chinese with English abstract)
doi: 10.12281/ffs2708-1893-20210326-001
[3]   ZHANG C, LI Y, WANG P, et al. Electrospinning of nano-fibers: potentials and perspectives for active food packaging[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 479-502. DOI: 10.1111/1541-4337.12536
doi: 10.1111/1541-4337.12536
[4]   CUI T T, YU J F, LI Q, et al. Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning[J]. Advanced Materials, 2020, 32(32): 2000982. DOI: 10.1002/adma.202000982
doi: 10.1002/adma.202000982
[5]   SHEN C Y, CAO Y, RAO J S, et al. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging[J]. Food Packaging and Shelf Life, 2021, 29: 100721. DOI: 10.1016/j.fpsl.2021.100721
doi: 10.1016/j.fpsl.2021.100721
[6]   DADOL G C, KILIC A, TIJING L D, et al. Solution blow spinning (SBS) and SBS-spun nanofibers: materials, methods, and applications[J]. Materials Today Communications, 2020, 25: 101656. DOI: 10.1016/j.mtcomm.2020.101656
doi: 10.1016/j.mtcomm.2020.101656
[7]   SALEHI B, MISHRA A P, SHUKLA I, et al. Thymol, thyme, and other plant sources: health and potential uses[J]. Phytotherapy Research, 2018, 32(9): 1688-1706. DOI: 10.1002/ptr.6109
doi: 10.1002/ptr.6109
[8]   MARCHESE A, ORHAN I E, DAGLIA M, et al. Antibac-terial and antifungal activities of thymol: a brief review of the literature[J]. Food Chemistry, 2016, 210: 402-414. DOI: 10.1016/j.foodchem.2016.04.111
doi: 10.1016/j.foodchem.2016.04.111
[9]   CHEN F P, KONG N Q, WANG L, et al. Nanocomplexation between thymol and soy protein isolate and its improve-ments on stability and antibacterial properties of thymol[J]. Food Chemistry, 2021, 334: 127594. DOI: 10.1016/j.foodchem.2020.127594
doi: 10.1016/j.foodchem.2020.127594
[10]   SUN J Y, LIU X X, CHEN Z R, et al. The application of polycaprolactone scaffolds with poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) loaded on kidney cell culture[J]. Materials, 2022, 15(4): 1591. DOI: 10.3390/ma15041591
doi: 10.3390/ma15041591
[11]   YANG Z C, SHEN C Y, ZOU Y C, et al. Application of solution blow spinning for rapid fabrication of gelatin/nylon 66 nanofibrous film[J]. Foods, 2021, 10: 2339. DOI: 10.3390/foods10102339
doi: 10.3390/foods10102339
[12]   SOW L C, TAN S J, YANG H. Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan[J]. Food Hydrocolloids, 2019, 90: 9-18. DOI: 10.1016/j.foodhyd.2018.12.006
doi: 10.1016/j.foodhyd.2018.12.006
[13]   DENG L L, LI Y, ZHANG A P, et al. Nano-hydroxyapatite incorporated gelatin/zein nanofibrous membranes: fabrication, characterization and copper adsorption[J]. International Journal of Biological Macromolecules, 2020, 154: 1478-1489. DOI: 10.1016/j.ijbiomac.2019.11.029
doi: 10.1016/j.ijbiomac.2019.11.029
[14]   ZOU Y C, ZHANG C, WANG P, et al. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging[J]. Carbohydrate Polymers, 2020, 247: 116711. DOI: 10.1016/j.carbpol.2020.116711
doi: 10.1016/j.carbpol.2020.116711
[15]   HASANPOUR ARDEKANI-ZADEH A, HOSSEINI S F. Electrospun essential oil-doped chitosan/poly(ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits[J]. Carbohydrate Polymers, 2019, 223: 115108. DOI: 10.1016/j.carbpol.2019.115108
doi: 10.1016/j.carbpol.2019.115108
[16]   CUI H Y, YUAN L, LIN L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef[J]. Carbohydrate Polymers, 2017, 177: 156-164. DOI: 10.1016/j.carbpol.2017.08.137
doi: 10.1016/j.carbpol.2017.08.137
[17]   DIAS F T G, REMPEL S P, AGNOL L D, et al. The main blow spun polymer systems: processing conditions and applications[J]. Journal of Polymer Research, 2020, 27(8): 205. DOI: 10.1007/s10965-020-02173-7
doi: 10.1007/s10965-020-02173-7
[18]   SUN C, CAO J P, WANG Y, et al. Ultrasound-mediated molecular self-assemble of thymol with 2-hydroxypropyl-β-cyclodextrin for fruit preservation[J]. Food Chemistry, 2021, 363: 130327. DOI: 10.1016/j.foodchem.2021.130327
doi: 10.1016/j.foodchem.2021.130327
[19]   MARRETO R N, CARDOSO G, DOS SANTOS SOUZA B, et al. Hot melt-extrusion improves the properties of cyclodextrin-based poly(pseudo)rotaxanes for transdermal formulation[J]. International Journal of Pharmaceutics, 2020, 586: 119510. DOI: 10.1016/j.ijpharm.2020.119510
doi: 10.1016/j.ijpharm.2020.119510
[20]   KO J S, CHO K H, HAN S W, et al. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular pro-stheses using poly(ethylene glycol) grafting[J]. Colloids and Surfaces B: Biointerfaces, 2017, 158: 287-294. DOI: 10.1016/j.colsurfb.2017.07.017
doi: 10.1016/j.colsurfb.2017.07.017
[1] Zhenjie WANG,Kang ZHANG,Li LIANG,Qingqing XIONG,Huahua DU. Effects of iron saturation on antibacterial activity of lactoferrin[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 377-382.
[2] Jinping CAO,Yezhi CHEN,Cui SUN,Yue WANG,Kunsong CHEN,Changfeng ZHANG,Chongde SUN. Development status of the technology supporting system for local commoditization of fruits and vegetables in China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 1-7.
[3] Xiaoyun LIU,Yong XU,Shiping TIAN,Tong CHEN. Progress on application of secondary metabolites from bamboo in controlling diseases and keeping freshness of fruits and vegetables[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 17-26.
[4] Ze LIANG,Lei WANG,Mingyi YANG,Zisheng LUO,Yanqun XU,Li LI. Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 8-16.
[5] LU Haiyan, XU Chongxin, ZHANG Xiao, LIANG Ying, LIU Xianjin. Antibacterial effect of limonene on food-borne pathogens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 306-312.
[6] LIU Shuping, WANG Lei . Optimization of the extraction process and combined determination
of antibacterial ingredients of Li Peng
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 23-29.
[7] Zhuang Yuanhong, Liu Jingna, Huang Jiafu, Lin Jiaofen, Pan Yutian . Stability and antibacterial activity of complex gel with edible chitosan and carbomer.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 147-152.
[8] WANG Chunrong, FANG Chengji, YU Qingqing, JIANG Peng, TIAN Wei*. Gas chromatography and mass spectrometry (GCMS) analysis of supercritical CO2 extract of flower bud of Chrysanthemum indicum and its antibacterial activity. Journal of Zhejiang University[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 167-172.