Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 744-752    DOI: 10.3785/j.issn.1008-9209.2022.06.293
Research articles     
Identification and analysis of a novel negevirus isolated from a leaf beetle, Aulacophora lewisii
Haiqiang WANG(),Yan ZHANG,Zhuangxin YE,Jichong ZHUO,Chuanxi ZHANG,Junmin LI,Jianping CHEN()
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China
Download: HTML   HTML (   PDF(1707KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

negevirus (nege-like virus) is a newly proposed virus taxon of insect-specific RNA viruses and has been found in various insect species. In this study, the complete genome of a novel nege-like virus, named as “Nbu Aulacophora lewisii nege-like virus 1” (NbuALNV-1), was identified from a single leaf beetle, Aulacophora lewisii. NbuALNV-1 is a positive-sense single-stranded RNA virus with the genome of 9 832 nucleotide (nt) in length (excluding the polyA tail), with a 5′ untranslated region (UTR) of 292 nt and a 3′ UTR of 77 nt, and six open reading frames (ORFs). Five conserved domains of negeviruses were predicted to be encoded by the genome of NbuALNV-1, consisting of the viral methyltransferase domain, RNA virus helicase domain, and RNA-dependent RNA polymerase (RdRp) domain in ORF1, and the DISB-ORF2_chro domain and SP24 domain in the other two ORFs. Phylogenetic analysis of RdRp amino acid sequences of NbuALNV-1, together with Hubei Wuhan insect virus 9, Aphis glycines virus 3, and Fort Crockett virus showed that they formed as an “unclassified” clade and closely related to members in plant viruses of the family Kitaviridae. Furthermore, typical characteristics of virus-derived small interfering RNAs were observed by NbuALNV-1-derived small interfering RNAs, indicating that NbuALNV-1 might induce the host RNA interfering antiviral immune response. In summary, a nege-like virus was identified in A. lewisii, and NbuALNV-1 is the first negevirus discovered in the insect order Coleoptera.



Key wordsnegeviruses      a novel virus identification      small interfering RNA      Aulacophora lewisii     
Received: 29 June 2022      Published: 25 December 2022
CLC:  S 433.5  
Corresponding Authors: Jianping CHEN     E-mail: 18735424758@163.com;jianpingchen@nbu.edu.cn
Cite this article:

Haiqiang WANG,Yan ZHANG,Zhuangxin YE,Jichong ZHUO,Chuanxi ZHANG,Junmin LI,Jianping CHEN. Identification and analysis of a novel negevirus isolated from a leaf beetle, Aulacophora lewisii. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 744-752.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.06.293     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/744


黑守瓜中一种新negevirus的鉴定和分析

negevirus(nege-like virus)是病毒学领域新增的一个分类单元,主要包括在节肢动物中鉴定的一类昆虫特异性病毒。本研究利用宏转录组技术从黑守瓜(Aulacophora lewisii)中鉴定到一种新的negevirus,命名为Nbu Aulacophora lewisii nege-like virus 1(NbuALNV-1)。NbuALNV-1为正义单链RNA病毒,全基因组包含9 832个核苷酸(nucleotide, nt)(不包括多聚腺苷酸尾),5、3非翻译区长度分别为292、77 nt。NbuALNV-1基因组包含6个开放阅读框,预测具有5个典型的negeviruses保守结构域,包括病毒甲基转移酶结构域、RNA病毒解旋酶结构域、RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase, RdRp)结构域、DISB?ORF2_chro结构域和SP24结构域。本研究利用NbuALNV-1和已报道的negeviruses的RdRp氨基酸序列基于最大似然法构建的系统发育分析表明,NbuALNV-1与Hubei Wuhan insect virus 9、Aphis glycines virus 3和Fort Crockett virus形成了一个独立分支,且该分支和北岛病毒科(Kitaviridae)的植物病毒在进化上具有相关性。此外,本研究对黑守瓜中NbuALNV-1病毒来源的干扰小RNA进行分析,发现这些干扰小RNA具有典型的病毒来源干扰小RNA的特征,表明NbuALNV-1能诱导宿主的RNA干扰抗病毒免疫反应。综上所述,本研究鉴定并分析了黑守瓜中的一种新的negevirus——NbuALNV-1,也是首次在鞘翅目昆虫中发现negevirus。


关键词: negeviruses,  新病毒鉴定,  干扰小RNA,  黑守瓜 

引物名称

Primer name

引物序列(5→3

Primer sequence (5→3)

引物用途

Usage of primer

长引物 Long primerCTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT5′/3′ RACE扩增
短引物 Short primerCTAATACGACTCACTATAGGGC
NbuALNV-1_3′ RACE_FGTCGTCTTGAATCACTGACAGAG

NbuALNV-1基因组3′末端

RACE扩增

NbuALNV-1_5′ RACE_RACATACTTAACCTACAGAATAACCT

NbuALNV-1基因组5′末端

RACE扩增

NbuALNV-1_cDNA_1FGGGATAAACATAAATTTTAC

NbuALNV-1基因组中间序列

扩增

NbuALNV-1_cDNA_1RAGTACGAACACTACAACCGACAT
NbuALNV-1_cDNA_2FCCCATGCTTTGCGTTTACTTTCA
NbuALNV-1_cDNA_2RCACCACCAACGCATTTAGGA
NbuALNV-1_cDNA_3FCGCGGGTACTCCTAAAATTG
NbuALNV-1_cDNA_3RCGTTAGAGAGAGCTTGGGGC
NbuALNV-1_cDNA_4FCCTGAAAGATTGGGGCGGTA
NbuALNV-1_cDNA_4RAGCATGGAACGGCAACATCA
NbuALNV-1_cDNA_5FCTGGTGGTGGTGTCGACGGTTATTGCTGTG
NbuALNV-1_cDNA_5RTTCCAAACAAAACGACTAGAACGAG
NbuALNV-1_cDNA_6FCTTGGTATTTTCAGGAAGCTGGTTT
NbuALNV-1_cDNA_6RTGAAAAACGGACAGGTACG
Table 1 Primer information
Fig. 1 Genome structure and reads coverage of NbuALNV-1A. Genome RNA of NbuALNV-1; B. Reads coverage of the genome of NbuALNV-1.

序号

No.

123456789101112131415161718

病毒名称(登录号)

Virus name (accession No.)

126.835.826.226.427.226.232.531.431.731.933.632.631.926.727.928.227.9NbuALNV-1
225.859.455.556.660.327.127.034.734.834.333.635.029.629.426.026.7Sandewavirus dungfly (QOJ43136.1)
324.925.125.925.137.943.136.836.736.635.935.931.430.030.230.2Fort Crockett virus (QKX46079.1)
465.665.796.624.626.332.532.932.932.232.726.723.424.223.9Bustos virus (BAU71147.1)
581.865.625.424.933.333.734.234.934.427.024.624.924.2Goutanap virus (AIL49273.1)
666.027.026.233.333.234.333.534.028.726.826.625.8Biggievirus Mos11 (ASO75598.1)
725.126.332.332.732.932.232.727.223.923.923.7Biratnagar virus (YP_009351824.1)
854.332.432.232.331.532.031.029.028.228.2Hubei Wuhan insect virus 9 (YP_009337901.1)
934.233.934.133.233.232.532.732.232.2Aphis glycines virus 3 (ASH89118.1)
1097.685.986.387.240.239.438.638.4Culex Negev EO-329-like virus (AXQ04834.1)
1185.987.187.140.439.138.638.6Negev-like virus #174 (CCV01575.2)
1289.991.441.739.439.639.4Ngewotan negevirus (AQM55320.1)
1391.538.437.636.836.4Manglie virus (QBR99594.1)
1440.139.037.637.3Ngewotan virus (QDC23193.1)
1548.850.950.2Hibiscus green spot virus 2 (YP_004928118.1)
1674.575.2Citrus leprosis virus C (ABC75821.1)
1795.6Hibiscus-infecting cilevirus (ATW76030.1)
18Citrus leprosis virus C2 (AGE82887.1)
Table 2 Homology of RdRp amino acid sequences among NbuALNV-1 and reported negeviruses
Fig. 2 Homology alignment analysis based on RdRp amino acid sequences of nege/nege-like virus and NbuALNV-1
Fig. 3 Phylogenetic tree of RdRp amino acid sequences of NbuALNV-1 and reported nege/nege-like virus based on the maximum likelihood
Fig. 4 Analysis of NbuALNV-1 derived vsiRNA
[1]   VASILAKIS N, FORRESTER N L, PALACIOS G, et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution[J]. Journal of Virology, 2013, 87(5): 2475-2488. DOI:10.1128/JVI.00776-12
doi: 10.1128/JVI.00776-12
[2]   KAWAKAMI K, KURNIA Y W, FUJITA R, et al. Characterization of a novel negevirus isolated from Aedes larvae collected in a subarctic region of Japan[J]. Archives of Virology, 2016, 161(4): 801-809. DOI:10.1007/s00705-015-2711-9
doi: 10.1007/s00705-015-2711-9
[3]   KALLIES R, KOPP A, ZIRKEL F, et al. Genetic characteriza-tion of goutanap virus, a novel virus related to negeviruses, cileviruses and higreviruses[J]. Viruses, 2014, 6(11): 4346-4357. DOI:10.3390/v6114346
doi: 10.3390/v6114346
[4]   QI Y H, XU L Y, ZHAI J, et al. Complete genome sequence of a novel nege-like virus in aphids (genus Indomegoura)[J]. Virology Journal, 2021, 18: 76. DOI:10.1186/s12985-021-01552-w
doi: 10.1186/s12985-021-01552-w
[5]   KONDO H, FUJITA M, HISANO H, et al. Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of nege/kita-like viruses and other novel RNA viruses[J]. Frontiers in Microbiology, 2020, 11: 509. DOI:10.3389/fmicb.2020.00509
doi: 10.3389/fmicb.2020.00509
[6]   SUVANTO M T, TRUONG NGUYEN P, UUSITALO R, et al. A novel negevirus isolated from Aedes vexans mosquitoes in Finland[J]. Archives of Virology, 2020, 165(12): 2989-2992. DOI:10.1007/s00705-020-04810-4
doi: 10.1007/s00705-020-04810-4
[7]   LU G, YE Z X, HE Y J, et al. Discovery of two novel negeviruses in a dungfly collected from the Arctic[J]. Viruses, 2020, 12(7): 692. DOI:10.3390/v12070692
doi: 10.3390/v12070692
[8]   LI J M, ANDIKA I B, SHEN J F, et al. Characterization of Rice Black-Streaked Dwarf Virus- and Rice Stripe Virus-Derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus [J]. PLoS ONE, 2013, 8(6): e66007. DOI:10.1371/journal.pone.0066007
doi: 10.1371/journal.pone.0066007
[9]   HUANG H J, YE Z X, WANG X, et al. Diversity and infectivity of the RNA virome among different cryptic species of an agriculturally important insect vector: whitefly Bemisia tabaci [J]. npj-Biofilms Microbiomes, 2021, 7: 43. DOI:10.1038/s41522-021-00216-5
doi: 10.1038/s41522-021-00216-5
[10]   曾茂芹,刘妍罕,张飘,等.宏基因组学在病毒研究上的应用概述[J].贵州畜牧兽医,2020,44(4):63-66. DOI:10.3969/j.issn.1007-1474.2020.04.023
ZENG M Q, LIU Y H, ZHANG P, et al. Overview of the application of metagenomics in virus research[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2020, 44(4): 63-66. (in Chinese)
doi: 10.3969/j.issn.1007-1474.2020.04.023
[11]   刘小明,邓耀华,司升云,等.黄足黄守瓜与黄足黑守瓜的识别与防治[J].长江蔬菜,2006(4):33. DOI:10.3865/j.issn.1001-3547.2006.04.025
LIU X M, DENG Y H, SI S Y, et al. The identification and prevention and control of Aulacophora femoralis chinensis and Aulacophora lewisii [J]. Journal of Changjiang Vegetables, 2006(4): 33. (in Chinese)
doi: 10.3865/j.issn.1001-3547.2006.04.025
[12]   YE Z X, LI Y H, CHEN J P, et al. Complete genome analysis of a novel iflavirus from a leaf beetle, Aulacophora lewisii [J]. Archives of Virology, 2021, 166(1): 309-312. DOI:10.1007/s00705-020-04859-1
doi: 10.1007/s00705-020-04859-1
[13]   GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652. DOI:10.1038/nbt.1883
doi: 10.1038/nbt.1883
[14]   KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. DOI:10.1093/molbev/mst010
doi: 10.1093/molbev/mst010
[15]   DARRIBA D, POSADA D, KOZLOV A M, et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models[J]. Molecular Biology and Evolution, 2020, 37(1): 291-294. DOI:10.1093/molbev/msz189
doi: 10.1093/molbev/msz189
[16]   KOZLOV A M, DARRIBA D, FLOURI T, et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference[J]. Bioinformatics, 2019, 35(21): 4453-4455. DOI:10.1093/bioinformatics/btz305
doi: 10.1093/bioinformatics/btz305
[1] Supplementary Table 1 Download
[1] Shen Enhui, Liu Yang, Ye Chuyu, Fan Longjiang. Recent studies on non-coding small RNAs in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 370-378.