Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 766-775    DOI: 10.3785/j.issn.1008-9209.2022.06.292
Research articles     
Screening the function of genes encoding neuropeptides and their receptors in Nilaparvata lugens
Siliang WANG1,2(),Xumei LUO1,Chuanxi ZHANG1,3()
1.Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, Zhejiang, China
3.State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China
Download: HTML   HTML (   PDF(4575KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Neuropeptides are crucial for life activities and environmental fitness of insects, which are potential targets for pest control. The brown planthopper (Nilaparvata lugens) is an important pest on rice in Asia. Thus, functional screening analysis of genes encoding neuropeptides and their receptors in N. lugens were conducted. The cDNA sequences of 41 neuropeptides (containing one alternative splicing transcript) and 44 receptors were verified by polymerase chain reaction (PCR). Four neuropeptide genes (NlCCAP, NlETH, NlOKA and NlPK) and two receptor genes (NlA36 and NlA46) were identified to cause high mortality through RNA interference (RNAi), showing potential in pest control. These genes knockdown resulted in the relative survival rate of adult less than 0.2 when injected with double-stranded RNA (dsRNA) at the third instar, and had the potential to be target genes for pest control. The results of RNAi also demonstrated that neuropeptides, such as crustacean cardioactive peptide (CCAP), ecdysis triggering hormone (ETH) and bursicon were conserved in physiological function, while other neuropeptides (eg. prothoracicotropic hormone, eclosion hormone) which related to ecdysis in other insects were undefined in physiological function in N. lugens. Our study provides a basis for further exploration of neuropeptides’ physiological function in N. lugens.



Key wordsNilaparvata lugens      neuropeptide      RNA interference      ecdysis     
Received: 29 June 2022      Published: 27 December 2022
CLC:  S 433.3  
Corresponding Authors: Chuanxi ZHANG     E-mail: wsl512935@163.com;chxzhang@zju.edu.cn
Cite this article:

Siliang WANG,Xumei LUO,Chuanxi ZHANG. Screening the function of genes encoding neuropeptides and their receptors in Nilaparvata lugens. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 766-775.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.06.292     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/766


褐飞虱神经肽及其受体基因的功能筛查

神经肽对昆虫的生命活动和环境适应性具有重要影响,是害虫防治的潜在靶标。褐飞虱(Nilaparvata lugens)是亚洲地区一种重要的水稻害虫。本研究对褐飞虱神经肽及其受体基因的功能进行了筛查,通过聚合酶链反应扩增并验证得到了41个神经肽基因(含1个可变剪接本)和44个受体基因。通过RNA干扰方法,得到沉默后造成高死亡率的4个神经肽基因(NlCCAPNlETHNlOKANlPK)和2个受体基因(NlA36NlA46),这些基因在褐飞虱3龄若虫阶段注射双链RNA(double-stranded RNA, dsRNA)进行沉默后,成虫相对存活率<0.2,具有成为害虫防治靶标的潜力。RNA干扰结果表明:几种蜕皮前后行为调控神经肽,如甲壳类动心肽、蜕皮诱导激素、鞣化激素的基因与其他昆虫研究中报道的功能相似,而另一些与蜕皮调控相关的神经肽(如促前胸腺激素、羽化激素)在褐飞虱中的生理功能则不明显。本研究为褐飞虱神经肽生理功能的深入探索奠定了基础。


关键词: 褐飞虱,  神经肽,  RNA干扰,  蜕皮 

神经肽基因

Neuropeptide gene

3龄时进行的RNA干扰

RNAi at the third instar

5龄时进行的RNA干扰

RNAi at the fifth instar

表型

Phenotype

RNA干扰效率

Efficiency of

RNAi/%

成虫相对存活率

Relative survival

rate of adult

RNA干扰效率

Efficiency of

RNAi/%

成虫相对存活率

Relative survival

rate of adult

NlACP97.88±0.361.0498.21±0.111.00
NlAKH86.12±2.830.6373.98±2.360.85
NlAST-A88.70±4.011.1397.15±0.401.12
NlAST-c99.24±0.281.0788.95±2.710.94
NlAST-cc78.76±7.140.7898.44±0.261.06
NlAT82.17±1.350.7876.52±0.810.78
NlAVLP94.82±1.140.9085.95±5.400.93
Nlburs-a99.76±0.020.7199.70±0.020.78成虫翅不展
Nlburs-b91.15±0.730.8085.75±5.860.78成虫翅不展
NlCAP2b93.14±2.810.8999.35±0.090.85
NlCCAP97.60±0.470.0477.82±5.240.76蜕皮受阻
NlCCH187.21±4.540.7384.42±4.980.64
NlCCH299.19±0.300.9882.98±1.260.60
NlCRZ97.46±0.190.9583.04±5.890.83
NlDH3198.67±0.800.7474.71±3.880.79
NlDH4583.57±6.230.9775.00±4.560.79
NlEH172.87±6.830.7295.81±1.380.94
NlEH276.02±5.830.7596.87±0.570.87
Nlelevenin94.89±0.811.0098.35±0.581.07体壁黑化
NlETH84.50±4.050.0299.51±0.280.52蜕皮前死亡
NlFMRF84.54±5.980.9585.45±2.001.07
NlGPA292.82±1.270.9195.37±0.690.81
NlGPB593.16±0.641.0685.62±3.951.07
Nlkinin78.78±2.830.8383.57±0.610.77
NlMIP89.31±0.730.9078.44±4.391.03
NlMS98.55±0.230.7895.20±1.170.99
NlNP98.39±0.530.9798.43±0.030.69
NlNPF76.43±5.740.6898.27±0.331.06
NlNPLPl85.26±0.551.0579.84±7.080.75
NlNPLP3l97.84±0.481.0497.02±0.500.75
NlNPLP4l97.90±0.670.8280.97±6.290.95
NlOKA99.72±0.050.0498.38±0.380.95蜕皮受阻
NlOKB97.41±0.090.9398.99±0.211.00
NlPDF98.05±0.380.7682.61±1.701.06
NlPK88.17±2.080.1795.03±0.690.93蜕皮受阻
Nlproctolin90.05±0.590.9199.29±0.120.87
NlPTTH79.01±1.190.6279.82±0.950.73
NlRY77.13±7.130.8989.74±1.540.73
NlsNPF99.48±0.140.7062.10±9.600.94
NlSIF99.88±0.010.8570.18±7.010.82
NlTK99.28±0.071.0685.05±2.910.91
Table 1 RNAi effects of neuropeptide genes in N. lugens

受体基因

Receptor gene

3龄时进行的RNA干扰

RNAi at the third instar

5龄时进行的RNA干扰

RNAi at the fifth instar

表型

Phenotype

RNA干扰效率

Efficiency of RNAi/%

成虫相对存活率

Relative survival

rate of adult

RNA干扰效率

Efficiency of

RNAi/%

成虫相对存活率

Relative survival

rate of adult

NlA272.38±1.880.7468.69±7.511.11
NlA372.20±2.321.1255.52±8.590.97
NlA481.01±3.500.8159.89±6.300.63
NlA681.92±4.400.7974.41±8.900.69
NlA778.57±2.630.5963.61±9.561.04
NlA889.33±0.280.7289.41±3.700.97
NlA971.14±2.440.5776.28±3.300.90
NlA1275.35±1.840.7461.25±9.320.97
NlA1376.71±1.420.9476.97±4.230.83
NlA1485.74±0.790.6066.65±9.000.97
NlA1570.13±8.470.8551.08±4.250.69
NlA1682.18±3.380.8174.04±5.370.97
NlA1775.00±6.020.9652.57±8.000.76
NlA1960.81±7.740.7572.77±2.930.83
NlA2162.53±1.630.8257.59±9.090.90
NlA2272.96±9.050.7067.94±7.710.76
NlA2371.04±4.030.7870.66±9.010.83
NlA2451.51±3.170.7754.94±9.180.76
NlA2576.70±3.680.9362.06±9.690.83
NlA2769.32±7.680.9065.11±4.850.90
NlA3082.14±2.350.8481.33±3.100.76
NlA3166.74±6.740.8153.94±6.221.04
NlA3262.92±7.700.6487.33±1.060.69
NlA3483.63±2.450.5160.64±5.531.01
NlA3580.36±0.910.9258.25±6.040.73
NlA3665.64±8.910.0572.73±5.010.83蜕皮受阻
NlA3870.12±7.260.8868.26±6.480.65
NlA3971.29±2.430.6765.34±4.050.65
NlA4079.07±5.501.0469.89±4.801.09
NlA4185.36±2.160.9168.07±2.160.76
NlA4283.76±3.390.6373.18±5.070.90体壁黑化
NlA4387.62±3.480.9452.34±9.890.69
NlA4484.52±4.460.9159.27±5.650.90
NlA4687.22±0.950.0072.55±3.060.33成虫翅不展
NlA4769.32±4.270.8259.46±6.070.90
NlA4875.41±3.750.7565.32±6.070.87
NlA4960.59±2.700.8861.39±6.210.87
NlB177.79±3.090.9056.45±7.410.76
NlB277.82±0.780.6365.06±6.590.83
NlB367.99±0.211.1559.55±8.381.04
NlB484.89±2.260.8260.25±6.400.83
NlB568.24±7.560.9466.07±7.220.97
NlB680.11±6.390.9182.61±2.281.11
NlB783.57±6.060.8589.58±0.600.69
Table 2 RNAi effects of neuropeptide receptor genes in N. lugens
Fig. 1 Survival rates and phenotypes of N. lugens with NlETH knockdown after RNAi
Fig. 2 Survival rates and phenotypes of N. lugens with NlCCAP knockdown after RNAiA. Survival rates of N. lugens when injected with dsNlCCAP at different instars; B. Phenotypes of N. lugens with NlCCAP knockdown after RNAi.
Fig. 3 Expression level changes of genes encoding two subunits of bursicon after injected with different dsRNAs
Fig. 4 Survival rates and phenotypes of N. lugens with Nlburs-a and Nlburs-b knockdown after RNAiA. Survival rates of N. lugens when injected with dsNlburs-a and dsNlburs-b at different instars; B. Phenotypes of N. lugens with Nlburs-a and Nlburs-b knockdown after RNAi.
Fig. 5 Effects of bursicon knockdown on phenotypes (A) and wing-unstretched rates of adults (B) in different instars of N. lugens
Fig. 6 Survival rates and phenotypes of N. lugens with NlA46 knockdown after RNAi
[1]   程家安,朱金良,祝增荣,等.稻田飞虱灾变与环境调控[J].环境昆虫学报,2008,30(2):176-182.
CHENG J A, ZHU J L, ZHU Z R, et al. Rice planthopper outbreak and environment regulation[J]. Journal of Environ-mental Entomology, 2008, 30(2): 176-182. (in Chinese with English abstract)
[2]   XU H J, CHEN T, MA X F, et al. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Insect Molecular Biology, 2013, 22(6): 635-647. DOI:10.1111/imb.12051
doi: 10.1111/imb.12051
[3]   XUE J, ZHOU X, ZHANG C X, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation[J]. Genome Biology, 2014, 15(12): 521. DOI:10.1186/s13059-014-0521-0
doi: 10.1186/s13059-014-0521-0
[4]   SCHOOFS L, DE LOOF A, VAN HIEL M B. Neuropeptides as regulators of behavior in insects[J]. Annual Review of Entomology, 2017, 62: 35-52. DOI:10.1146/annurev-ento-031616-035500
doi: 10.1146/annurev-ento-031616-035500
[5]   ELPHICK M R, MIRABEAU O, LARHAMMAR D. Evolution of neuropeptide signalling systems[J]. The Journal of Experimental Biology, 2018, 221(3): jeb151092. DOI:10.1242/jeb.151092
doi: 10.1242/jeb.151092
[6]   TANAKA Y, SUETSUGU Y, YAMAMOTO K, et al. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens [J]. Peptides, 2014, 53: 125-133. DOI:10.1016/j.peptides.2013.07.027
doi: 10.1016/j.peptides.2013.07.027
[7]   BAO Y Y, WANG Y, WU W J, et al. De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response[J]. Genomics, 2012, 99(4): 256-264. DOI:10.1016/j.ygeno.2012.02.002
doi: 10.1016/j.ygeno.2012.02.002
[8]   LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
[9]   WANG S L, WANG W W, MA Q, et al. Elevenin signaling modulates body color through the tyrosine-mediated cuticle melanism pathway[J]. The FASEB Journal, 2019, 33(9): 9731-9741. DOI:10.1096/fj.201802786RR
doi: 10.1096/fj.201802786RR
[10]   VATANPARAST M, KIM Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua [J]. PLoS ONE, 2017, 12(8): e0183054. DOI:10.1371/journal.pone.0183054
doi: 10.1371/journal.pone.0183054
[11]   ZITNAN D, ADAMS M E. Neuroendocrine regulation of ecdysis[M]//GILBERT L. Insect Endocrinology. London: Academic Press, 2012: 253-309.
[12]   朱斌,刘孝明,杜孟芳,等.昆虫鞣化激素研究进展[J].昆虫学报,2013,56(12):1469-1479. DOI:10.16380/j.kcxb.2013.12.003
ZHU B, LIU X M, DU M F, et al. Progress in insect bursicon[J]. Acta Entomologica Sinica, 2013, 56(12): 1469-1479. (in Chinese with English abstract)
doi: 10.16380/j.kcxb.2013.12.003
[13]   弓慧琼,赵小明,郭东龙,等.昆虫鞣化激素及其受体研究进展[J].应用昆虫学报,2018,55(3):317-328. DOI:10.7679/j.issn.2095-1353.2018.043
GONG H Q, ZHAO X M, GUO D L, et al. Progress in research on insect bursicon and its receptor[J]. Chinese Journal of Applied Entomology, 2018, 55(3): 317-328. (in Chinese with English abstract)
doi: 10.7679/j.issn.2095-1353.2018.043
[14]   ARAKANE Y, LI B, MUTHUKRISHNAN S, et al. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum [J]. Mechanisms of Development, 2008, 125(11/12): 984-995. DOI:10.1016/j.mod.2008.09.002
doi: 10.1016/j.mod.2008.09.002
[15]   HASEGAWA K. The diapause hormone of the silkworm, Bombyx mori [J]. Nature, 1957, 179(4573): 1300-1301.
[16]   WULFF J P, CAPRIOTTI N, ONS S. Orcokinins regulate the expression of neuropeptide precursor genes related to ecdysis in the hemimetabolous insect Rhodnius prolixus [J]. Journal of Insect Physiology, 2018, 108: 31-39. DOI:10.1016/j.jinsphys.2018.05.006
doi: 10.1016/j.jinsphys.2018.05.006
[17]   HOLMAN G M, COOK B J, NACHMAN R J. Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae [J]. Comparative Biochemistry and Physiology C: Comparative Pharmacology, 1986, 85(1): 219-224.
[18]   KAMIMOTO S, NOHARA R, ICHIKAWA T. Coordination between the electrical activity of developing indirect flight muscles and the firing activity of a population of neurosecretory cells in the silkmoth, Bombyx mori [J]. Zoological Science, 2006, 23(5): 449-457. DOI:10.2108/zsj.23.449
doi: 10.2108/zsj.23.449
[19]   VERLEYEN P, CLYNEN E, HUYBRECHTS J, et al. Fraenkel’s pupariation factor identified at last[J]. Developmental Biology, 2004, 273(1): 38-47. DOI:10.1016/j.ydbio.2004.05.021
doi: 10.1016/j.ydbio.2004.05.021
[20]   PAWEL M, MONIKA S, JOANNA P B, et al. New myotropic and metabotropic actions of pyrokinins in tenebrionid beetles[J]. General and Comparative Endocri-nology, 2012, 177(2): 263-269. DOI:10.1016/j.ygcen.2012.04.008
doi: 10.1016/j.ygcen.2012.04.008
[1] Fang WANG,Cong DANG,Hongxia JIN,Shan XIAO,Fujun ZHONG,Qi FANG,Hongwei YAO,Gongyin YE. Application of RNA interference technology in pest control and its safety[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 683-691.