Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 830-842    DOI: 10.3785/j.issn.1008-9209.2022.06.151
Research articles     
Inhibitory effects of four different kinds of triazole fungicides against Fusarium oxysporum f. sp. cubense and their differences
Dandan XIANG(),Xiaofang YANG,Ganjun YI,Haiqing TAO,Yuanqi CHU,Chunyu LI()
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
Download: HTML   HTML (   PDF(7760KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The Chinese banana industry is under grave threat by Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc). However, it is still obscure how to control this devastating disease effectively. In this study, the fungicidal activities of four triazole fungicides were tested by hyphae growth rates of Foc tropical race 4 (Foc TR4). The results showed that the fungicidal activities of these four fungicides were prothioconazole>tebuconazole>propiconazole>myclobutanil. The morphology changes and membrane integrity of Foc TR4 in response to these four fungicides were evaluated by morphological observation of hyphae, and detection of relative conductivity and malondialdehyde (MDA) concentrations. Compared with the control group, all these four fungicides can cause abnormalities including increased hyphae branching, irregular distorted, shrivelled, sunken and flattened in hypha cells of Foc TR4. The MDA concentrations and membrane permeability of hypha cells were significantly elevated in all treatment groups. The activities of the cytochrome P450 enzymes were increased significantly so were the expression levels of cytochrome P450 sterol 14α-demethylase (CYP51) genes CYP51-1 and CYP51-3 upon treatment with these fungicides. Molecular docking and surface plasmon resonance (SPR) assays were employed to demonstrate interaction modes of four fungicides with CYP51 of Foc TR4. Even though prothioconazole showed less binding affinity with CYP51 than other three fungicides, it showed the strongest fungicidal activity against Foc TR4, which indicated the specificity of its mode of interaction with CYP51. This study can provide some theoretical references for the screening and rational design of novel fungicides for controlling Fusarium wilt of banana pathogen of Foc.



Key wordstriazole fungicides      Fusarium wilt of banana      Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4)      chemical control     
Received: 15 June 2022      Published: 27 December 2022
CLC:  S 432.1  
Corresponding Authors: Chunyu LI     E-mail: xiangdandan@gdaas.cn;lichunyu881@163.com
Cite this article:

Dandan XIANG,Xiaofang YANG,Ganjun YI,Haiqing TAO,Yuanqi CHU,Chunyu LI. Inhibitory effects of four different kinds of triazole fungicides against Fusarium oxysporum f. sp. cubense and their differences. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 830-842.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.06.151     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/830


4种三唑类杀菌剂对香蕉枯萎病菌的抑制效果及其差异性

香蕉枯萎病由尖孢镰刀菌古巴专化型(Fusarium oxysporum f. sp. cubense, Foc)侵染引起,正严重威胁着我国香蕉产业,目前尚无有效的化学防治措施。本研究通过测定菌丝生长速率比较了香蕉枯萎病菌热带4号生理小种(Foc tropical race 4, Foc TR4)对4种常用三唑类杀菌剂的敏感性,发现丙硫菌唑、戊唑醇、丙环唑、腈菌唑对Foc TR4的抑制作用依次减小。通过菌丝形态观察、相对电导率测定和丙二醛含量测定发现,与对照组相比,4种杀菌剂均可引起Foc TR4菌丝分枝增多、不规则扭曲,表面干瘪、凹陷和扁平化等畸形现象,使得菌丝细胞膜通透性和丙二醛含量显著性增加。三唑类杀菌剂可增大细胞色素P450酶活性并显著性上调细胞色素P450甾醇14α-脱甲基酶(cytochrome P450 sterol 14α-demethylase, CYP51)基因CYP51-1CYP51-3的表达。本研究还通过分子对接和表面等离子共振试验明确了4种三唑类杀菌剂与Foc TR4中CYP51的互作模式差异,发现虽然丙硫菌唑对Foc TR4的生物活性优于其他3种杀菌剂,但是其与CYP51的亲和力最弱,说明丙硫菌唑与CYP51的作用方式存在特异性。本研究可为防治香蕉枯萎病菌Foc的新型杀菌剂的筛选和合理设计提供一定的理论参考。


关键词: 三唑类杀菌剂,  香蕉枯萎病,  尖孢镰刀菌古巴专化型热带4号生理小种,  化学防治 

目的基因

Target gene

引物序列(5→3

Primer sequence (5→3)

CYP51-1F: CACGGCTTCGTTTTCGTGTT
R: CGGTTCGCAACAGTAGAGGT
CYP51-2F: AAGGGTAGTGGGGAGACAGTT
R: GACCAGGCTTCTCAATGTGGA
CYP51-3F: CTGATTTGCCTCCCCTGACTT
R: GAAGTAGGCCGAGTCAGTAGC
G6PDHF: ATATTCCCCGAAACGAGCTT
R: ATGCTGAGACCAGGCAACTT
Table 1 Primer sequences for qRT-PCR
Fig. 1 Inhibitory effects of different triazole fungicides against Foc TR4 and hyphae morphologyA. Colony diameter; B. Growth inhibition rates of hyphae; C. Hyphae morphology observed by the light microscopy; D. Hyphae morphology observed by the scanning electron microscopy.
 
Fig. 2 Effects of different triazole fungicides on the relative conductivity of Foc TR4 hypha cellsA. Prothioconazole; B. Tebuconazole; C. Propiconazole; D. Myclobutanil.
Fig. 3 Effects of different triazole fungicides on concentrations of MDA in Foc TR4 hypha cellsDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level, and n=3. The same as below.
Fig. 4 Effects of different triazole fungicides on cytochrome P450 enzyme activity and relative expression levels of target gene CYP51
Fig. 5 Homology modeling of CYP51 protein from Foc TR4A. Sequence alignment of CYP51 protein from Foc TR4 and different templates; B. Three-dimensional (3D) structure and docking box of CYP51 protein.
Fig. 6 Binding modes of four triazole fungicides with CYP51 predicted by molecular dockingA. 3D interaction schematic diagrams; B. 2D interaction schematic diagrams.

配体

Ligand

结合自由能

Binding free energy/(kJ/mol)

结合速率常数

Ka/(L/(mol·s))

解离速率常数

Kd/s-1

亲和动力常数

KD/(mol/L)

丙硫菌唑

Prothioconazole

-33.795.19×1021.49×10-42.87×10-7

戊唑醇

Tebuconazole

-34.921.09×1062.63×10-32.42×10-9

丙环唑

Propiconazole

-36.592.20×1051.73×10-27.86×10-8

腈菌唑

Myclobutanil

-34.081.07×1022.30×10-42.15×10-6
Table 2 Molecular docking and affinity-kinetic parameters of different triazole fungicides with CYP51
Fig. 7 Binding kinetic curves of different triazole fungicides with CYP51A. Prothioconazole; B. Tebuconazole; C. Propiconazole; D. Myclobutanil.
[1]   PLOETZ R C. Management of Fusarium wilt of banana: a review with special reference to tropical race 4[J]. Crop Protection, 2015, 73: 7-15. DOI:10.1016/j.cropro.2015.01.007
doi: 10.1016/j.cropro.2015.01.007
[2]   DITA M, BARQUERO M, HECK D, et al. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management[J]. Frontiers in Plant Science, 2018, 9: 1468. DOI:10.3389/fpls.2018.01468
doi: 10.3389/fpls.2018.01468
[3]   GALVIS S. Colombia confirms that dreaded fungus has hit its banana plantations[N/OL]. Science, 2019-08-12[2022-06-03].
[4]   NEL B, STEINBERG C, LABUSCHAGNE N, et al. Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana[J]. Crop Protection, 2007, 26: 697-705. DOI:10.1016/j.cropro.2006.06.008
doi: 10.1016/j.cropro.2006.06.008
[5]   许文耀,兀旭辉,林成辉.香蕉枯萎病防治剂的筛选[J].福建农林大学学报(自然科学版),2005,34(4):420-424. DOI:10.13323/j.cnki.j.fafu(nat. sci.).2005.04.004
XU W Y, WU X H, LIN C H. Selection of the fungicides against banana vascular wilt[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2005, 34(4): 420-424. (in Chinese with English abstract)
doi: 10.13323/j.cnki.j.fafu(nat. sci.).2005.04.004
[6]   范鸿雁,谢艺贤,张辉强.几种杀菌剂对香蕉枯萎病菌的室内毒力测定[J].农药,2004,43(3):142-143. DOI:10.16820/j.cnki.1006-0413.2004.03.019
FAN H Y, XIE Y X, ZHANG H Q. Toxicity of several fungicides to the banana vascular wilt pathogen[J]. Chinese Journal of Pesticides, 2004, 43(3): 142-143. (in Chinese with English abstract)
doi: 10.16820/j.cnki.1006-0413.2004.03.019
[7]   杜宜新,杨秀娟,阮宏椿,等.几种杀菌剂及其混配剂对香蕉枯萎病菌的毒力测定[J].农药,2008,47(10):764-766. DOI:10.16820/j.cnki.1006-0413.2008.10.024
DU Y X, YANG X J, RUAN H C, et al. Toxicity tests of several fungicides and their mixtures to Fusarium oxysporum [J]. Agrochemicals, 2008, 47(10): 764-766. (in Chinese with English abstract)
doi: 10.16820/j.cnki.1006-0413.2008.10.024
[8]   郭立佳,杨腊英,彭军,等.不同药剂防治香蕉枯萎病效果评价[J].中国农学通报,2013,29(1):188-192. DOI:10.3969/j.issn.1000-6850.2013.01.039
GUO L J, YANG L Y, PENG J, et al. Evaluation of control affection of fungicides on Fusarium wilt of banana[J]. Chinese Agricultural Science Bulletin, 2013, 29(1): 188-192. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2013.01.039
[9]   KEMA G H J, DRENTH A, DITA M, et al. Editorial: Fusarium wilt of banana, a recurring threat to global banana production[J]. Frontiers in Plant Science, 2021, 11: 628888. DOI:10.3389/fpls.2020.628888
doi: 10.3389/fpls.2020.628888
[10]   PEGG K G, COATES L M, O’NEILL W T, et al. The epidemiology of Fusarium wilt of banana[J]. Frontiers in Plant Science, 2019, 10: 1395. DOI:10.3389/fpls.2019.01395
doi: 10.3389/fpls.2019.01395
[11]   张静静.三唑类杀菌剂研究[J].生物化工,2019,5(6):126-128. DOI:10.3969/j.issn.2096-0387.2019.06.037
ZHANG J J. Research progress on triazole fungicides[J]. Biological Chemical Engineering, 2019, 5(6): 126-128. (in Chinese with English abstract)
doi: 10.3969/j.issn.2096-0387.2019.06.037
[12]   PEYTON L R, GALLAGHER S, HASHEMZADEH M. Triazole antifungals: a review[J]. Drugs of Today (Barcelona), 2015, 51(12): 705-718. DOI:10.1358/dot.2015.51.12.2421058
doi: 10.1358/dot.2015.51.12.2421058
[13]   张俊.丙环唑对核盘菌和指状青霉菌抑制作用的研究[D].武汉:华中农业大学,2019.
ZHANG J. Inhibitory effects of propiconazole on Sclerotinia sclerotiorum and Penicillium digitatum [D]. Wuhan: Huazhong Agricultural University, 2019.
[14]   FRIGGERI L, HARGROVE T Y, WAWRZAK Z, et al. Sterol 14α-demethylase structure-based design of VNI ((R)-N-(1-(2, 4-dichlorophenyl)-2-(1 H-imidazol-1-yl) ethyl)-4-(5-phenyl-1, 3, 4-oxadiazol-2-yl) benzamide)) derivatives to target fungal infections: synthesis, biological evaluation, and crystallographic analysis[J]. Journal of Medicinal Che-mistry, 2018, 61(13): 5679-5691. DOI:10.1021/acs.jmedchem.8b00641
doi: 10.1021/acs.jmedchem.8b00641
[15]   KENIYA M V, SABHERWAL M, WILSON R K, et al. Crystal structures of full-length lanosterol 14α-demethylases of prominent fungal pathogens Candida albicans and Candida glabrata provide tools for antifungal discovery[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(11): e01134-18. DOI:10.1128/AAC.01134-18
doi: 10.1128/AAC.01134-18
[16]   SAGATOVA A A, KENIYA M V, TYNDALL J D A, et al. Impact of homologous resistance mutations from pathogenic yeast on Saccharomyces cerevisiae lanosterol 14α-demethylase[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(3): e02242-17. DOI:10.1128/AAC.02242-17
doi: 10.1128/AAC.02242-17
[17]   YANG X F, GONG R G, CHU Y Q, et al. Mechanistic insights into stereospecific antifungal activity of chiral fungicide prothioconazole against Fusarium oxysporum f. sp. cubense [J]. International Journal of Molecular Sciences, 2022, 23(4): 2352. DOI:10.3390/ijms23042352
doi: 10.3390/ijms23042352
[18]   MARTÍ-RENOM M A, STUART A C, FISER A, et al. Comparative protein structure modeling of genes and genomes[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 291-325. DOI:10.1146/annurev.biophys.29.1.291
doi: 10.1146/annurev.biophys.29.1.291
[19]   ZHENG B X, YAN L Y, LIANG W X, et al. Paralogous Cyp51s mediate the differential sensitivity of Fusarium oxysporum to sterol demethylation inhibitors[J]. Pest Manage-ment Science, 2019, 75(2): 396-404. DOI:10.1002/ps.5127
doi: 10.1002/ps.5127
[20]   ZHANG J, HU S M, XU Q R, et al. Baseline sensitivity and control efficacy of propiconazole against Sclerotinia sclero-tiorum [J]. Crop Protection, 2018, 114: 208-214. DOI:10.1016/j.cropro.2018.08.034
doi: 10.1016/j.cropro.2018.08.034
[21]   丁涛,张坤,杨进,等.丙硫菌唑与5种常用杀菌剂复配对水稻,小麦纹枯病菌的联合毒力[J].现代农药,2021,20(4):56-60, 64. DOI:10.3969/j.issn.1671-5284.2021.04.012
DING T, ZHANG K, YANG J, et al. Combined virulence of the mixtures of prothioconazole with five kinds of commonly used fungicides to Rhizoctonia solani and Rhizoctonia cerealis [J]. Modern Agrochemicals, 2021, 20(4): 56-60, 64. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671-5284.2021.04.012
[22]   黄金光,赵彦翔.甾醇14α-脱甲基酶CYP51蛋白结构及其抗药性功能研究进展[J].青岛农业大学学报(自然科学版),2020,37(1):27-31. DOI:10.3969/j.issn.1674-148X.2020.01.005
HUANG J G, ZHAO Y X, Advances in the study of protein structure and fungicide resistance function of sterol 14 α-demethylase CYP51[J]. Journal of Qingdao Agricultural University (Natural Sciences), 2020, 37(1): 27-31. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-148X.2020.01.005
[23]   MARTEL C M, PARKER J E, WARRILOW A G S, et al. Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (sterol 14α-demethylase) doxycycline-regulated mutant and screening of the azole sensitivity of Aspergillus fumigatus isoenzymes CYP51A and CYP51B[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(11): 4920-4923. DOI:10.1128/AAC.00349-10
doi: 10.1128/AAC.00349-10
[24]   YAN X, MA W B, LI Y, et al. A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae [J]. Fungal Genetics and Biology, 2011, 48(2): 144-153. DOI:10.1016/j.fgb.2010.09.005
doi: 10.1016/j.fgb.2010.09.005
[25]   FAN J R, URBAN M, PARKER J E, et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function[J]. New Phytologist, 2013, 198(3): 821-835. DOI:10.1111/nph.12193
doi: 10.1111/nph.12193
[26]   PAUL R A, RUDRAMURTHY S M, MEIS J F, et al. A novel Y319H substitution in CYP51C associated with azole resistance in Aspergillus flavus [J]. Antimicrobial Agents and Chemotherapy, 2015, 59(10): 6615-6619. DOI:10.1128/AAC.00637-15
doi: 10.1128/AAC.00637-15
[27]   MUELLENDER M M, MAHLEIN A K, STAMMLER G, et al. Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates[J]. Pest Management Science, 2021, 77(4): 1765-1774. DOI:10.1002/ps.6197
doi: 10.1002/ps.6197
[28]   YIN Y, LIU X, LI B, et al. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China[J]. Phyto-pathology, 2009, 99(5): 487-497. DOI:10.1094/PHYTO-99-5-0487
doi: 10.1094/PHYTO-99-5-0487
[29]   SUN X P, WANG J Y, FENG D, et al. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis[J]. Applied Microbiology and Biotechnology, 2011, 91(4): 1107-1119. DOI:10.1007/s00253-011-3355-7
doi: 10.1007/s00253-011-3355-7
[30]   DEGRADI L, TAVA V, KUNOVA A, et al. Telomere to telomere genome assembly of Fusarium musae F31, causal agent of crown rot disease of banana[J]. Molecular Plant-Microbe Interactions, 2021, 34(12): 1455-1457. DOI:10.1094/MPMI-05-21-0127-A
doi: 10.1094/MPMI-05-21-0127-A
[31]   QIAN H W, DUAN M L, SUN X M, et al. The binding mechanism between azoles and FgCYP51B, sterol 14α‐demethylase of Fusarium graminearum [J]. Pest Management Science, 2018, 74(1): 126-134. DOI:10.1002/ps.4667
doi: 10.1002/ps.4667
[1] Ting XIE,Jinyan LUO,Lei CHEN,Wei DU,Jie ZHU,Bin LI. Comparison of control methods of cucumber green mottle mosaic virus disease and their prospects[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 279-288.