Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 1-13    DOI: 10.3785/j.issn.1008-9209.2022.05.161
Reviews     
Advances on whole genome sequencing in Triticeae
Liuhui KUANG(),Qi LI,Guoping ZHANG()
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(922KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The Triticeae provides the important cereal crops, such as wheat, barley, and rye, which produces approximately 9×108 t annually, accounting for about 30% of the total global cereal production. However, Triticeae genomes are relatively difficult to be de novo sequenced and assembled due to their large genome size, a high proportion of repeat sequences, and different ploidy levels. With the rapid development of third-generation long read sequencing technologies and assembly algorithms designed for complex genomes, and also the falling cost of genome sequencing in recent years, more and more Triticeae species have been successfully sequenced. In this study, we reviewed the advances on the whole genome sequencing of 17 Triticeae species (including subspecies), including Triticum, Hordeum, Secale, Elytrigia, and Aegilops, in aspects of sequencing technology, assembly strategy and quality, and the major research contents associated with genomes and gene functions. This review may provide the references for sequencing strategies and genomic studies of other more complex plant genomes.



Key wordsTriticeae      genome      whole genome sequencing      Triticum      Hordeum      Secale      Elytrigia      Aegilops     
Received: 16 May 2022      Published: 07 March 2023
CLC:  S512.1  
Corresponding Authors: Guoping ZHANG     E-mail: kuangliuhui@zju.edu.cn;Zhanggp@zju.edu.cn
Cite this article:

Liuhui KUANG,Qi LI,Guoping ZHANG. Advances on whole genome sequencing in Triticeae. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 1-13.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.05.161     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/1


小麦族全基因组测序研究进展

小麦族是禾本科植物中最重要的粮食作物来源之一,包括小麦、大麦、黑麦等麦类作物,全球年产量高达9亿t,约占全部谷类产量的30%。小麦族物种基因组庞大,重复序列比例高,且倍性水平多样,因此其从头测序和组装难度相对较大。近年来,随着三代长读长测序技术和针对复杂基因组的组装算法不断发展,以及测序成本显著下降,越来越多的小麦族物种的全基因组测序工作相继完成。本文综述了小麦族中小麦属、大麦属、黑麦属、偃麦草属和山羊草属共计17个物种(包括亚种)的全基因组研究进展,包括测序技术、拼装策略、组装质量、基因组和基因功能的主要分析内容等,旨在为更复杂的植物基因组测序和基因组学研究提供一定的理论与技术参考。


关键词: 小麦族,  基因组,  全基因组测序,  小麦属,  大麦属,  黑麦属,  偃麦草属,  山羊草属 

物种/基因组

Species/genome

品种

Cultivar

组装大小

Assembly

size/Gb

染色体

序列大小

Chromosome

sequence size/

Gb

Contig

N50/kb

Scaffold

N50/kb

HC基因数量

HC gene

number

BUSCO

评估指数

BUSCO

assessment

index/%

测序方法

Sequencing strategy

发表年份

Year

published

文献

Reference

普通小麦/AABBDD

T. aestivum/AABBDD

中国春5.42NANANA

94 000~

96 000

NA全基因组鸟枪法/Roche 454测序2012[11]
中国春10.24NANA2.3124 20195.4分染色体测序、BAC测序、Illumina PE2014[12]
中国春13.43NA16.788.8104 091NA

Illumina PE/MP、链特异性RNA-Seq、

PacBio全长转录组

2017[13]
中国春15.34NA232.7NANA98.3Illumina PE、PacBio SMRT2017[14]
中国春14.5014.0751.822 800107 89199.0

BAC测序、Illumina PE/MP、

DeNovoMAGIC2、10×Genomics、

BioNano光学图谱、Hi-C、POPSEQ遗

传图谱

2018[10]
W79849.127.108.324.8NANA

全基因组鸟枪法/Illumina PE/MP、

POPSEQ遗传图谱

2015[16]
Fielder15.0014.70NA20 700116 48097.1

PacBio循环共识测序(CCS)、Omni-C

染色体构象捕获

2021[17]
泛基因组14.3~14.913.9~14.2

48.9~

83.5

10 200~

49 700

118 734~

120 967

97.6~98.4

Illumina PE/MP、DeNovoMAGIC3、10×

Genomics、Nanopore、Hi-C、POPSEQ遗传图谱

2020[18]

西藏半野生小麦/AABBDD

T. aestivum ssp. tibetanum/

AABBDD

藏181714.7114.0566.337 600118 07899.5

Illumina PE/MP、DeNovoMAGIC3、10×

Genomics、借助‘中国春’参考基因组

(2018)进行染色体挂载

2020[19]

乌拉尔图小麦/AA

T. urartu/AA

G18124.66NA3.463.734 87986.3全基因组鸟枪法/Illumina PE2013[22]
G18124.864.67344.03 70037 516NA

BAC测序、PacBio SMRT、10×

Genomics、BioNano光学图谱

2018[23]

粗山羊草/DD

A. tauschii/DD

AL8/784.231.724.557.634 498NA

全基因组鸟枪法/Illumina PE、Roche

454测序、遗传图谱

2013[24]
AL8/784.794.03NANA17 093NA全基因组鸟枪法、BAC测序、遗传图谱2013[25]
AL8/784.34NA486.8521.7NANAMaSuRCA混合拼装(Illumina PE/MP、PacBio SMRT)2017[26]
AL8/784.313.99112.612 10042 82897.0

Illumina PE/MP、DeNovoMAGIC2、

PacBio SMRT、高密度SNP遗传图谱

2017[27]
AL8/784.234.0393.131 70039 62297.8

BAC测序、全基因组鸟枪法、PacBio

SMRT、BioNano光学图谱

2017[28]

野生二粒小麦/AABB

T. turgidum var.

dicoccoides/AABB

Zavitan10.5010.1057.47 00065 01298.4

Illumina PE、DeNovoMAGIC2、

Hi-C、遗传图谱

2017[4]

硬粒小麦/AABB

T. turgidum var. durum/

AABB

Svevo10.459.9656.26 00066 55998.1

Illumina PE/MP、DeNovoMAGIC2、

Hi-C、高密度SNP遗传图谱

2019[29]

大麦/HH

H. vulgare/HH

Morex1.87NA1.4NA26 159NA

全基因组鸟枪法/Illumina PE/MP、

Roche 454测序、RNA-Seq

2012[30]
Morex4.794.54/4.6379.01 90039 73492.5

BAC测序、Illumina PE/MP、Roche

454测序、BioNano光学图谱,Hi-C、POPSEQ遗传图谱

2017[31]
Morex4.654.34NA40 20032 78798.9

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2019[32]
Morex4.504.2069 600118 90035 82798.6

TRITEX(IIllumina PE/MP、10×

Genomics、Hi-C)、PacBio SMRT、

PacBio CCS、Nanopore

2021[33]
Haruna Nijo2.00NANA3.530 60680.2Illumina PE、Roche 454测序2016[34]
Haruna Nijo4.284.13NA18 90049 52496.0

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2022[35]
AAC Synergy4.854.1440.02 30046 84593.9

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)、PacBio SMRT

2021[36]
Golden Promise4.134.1322.44 10045 15495.2

Illumina PE/MP、Dovetail Chicago、

Hi-C

2020[37]
泛基因组3.8~4.53.8~4.5NA

5 000~

42 700

35 859~

40 044

NAMinia+SOAPdenovo+TRITEX(Illumina PE/MP、10×Genomics、Hi-C)、DeNovoMAGIC3、POPSEQ遗传图谱2020[38]

青稞/HH

H. vulgare var. coeleste/HH

拉萨钩芒3.893.4818.1242.036 151NA

全基因组鸟枪法/Illumina PE、Morex

基因组(2012)和遗传图谱进行染色体

挂载

2015[39]
藏青320

3.73/

4.84

4.595.9171.146 787NA

Illumina PE/MP、PacBio SMRT、Morex

V1基因组(2017)进行染色体挂载

2018[40]
拉萨钩芒4.00NA1 6004 00040 45795.7Illumina MP、PacBio SMRT、遗传图谱2020[41]

钝稃野大麦/HH

H. spontaneum/HH

AWCS276/WB14.28NA35.4724.936 39595.3全基因组鸟枪法/Illumina PE2020[5]
OUH6024.504.32NA11 30043 37597.1

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2021[6]

海大麦/XaXa

H. marinum/XaXa

H5593.823.696 830524 47041 04598.4

Illumina PE、PacBio SMRT、10×

Genomics、Hi-C

2022[46]

黑麦/RR

S. cereale/RR

Lo72.80NA1.79.527 78489.0Illumina PE/MP2017[48]
威宁黑麦7.747.25480.41 000 00045 59696.7

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)、PacBio SMRT、遗传

图谱、BioNano光学图谱

2021[47]

长穗偃麦草/EE

E. elongatum/EE

NA4.634.542 20073 20044 47497.6

Illumina PE/MP、DeNovoMAGIC3、

PacBio SMRT、10×Genomics、

BioNano光学图谱、Hi-C

2020[7]

二角山羊草/S*S*

A. bicornis/S*S*

TB015.645.388 700NA40 22295.1Nanopore、Hi-C、Illumina短读长测序2022[21]

高大山羊草/S*S*

A. longissima/S*S*

TL055.805.231 100NA37 20194.0Nanopore、Hi-C、Illumina短读长测序2022[21]
AEG-6782-26.705.928.73 80031 18397.5

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2022[49]

西尔斯山羊草/S*S*

A. searsii/S*S*

searsii5.344.66600NA37 99592.9Nanopore、Hi-C、Illumina短读长测序2022[21]

沙融山羊草/S*S*

A. sharonensis/S*S*

TH025.895.141 000NA38 44093.2Nanopore、Hi-C、Illumina短读长测序2022[21]
AS_16446.706.30NA12 30030 62696.5

全基因组鸟枪法/Illumina MP、10×

Genomics、Hi-C

2022[50]

拟斯卑尔脱山羊草/SS

A. speltoides/SS

TS014.113.761 800NA37 60793.8Nanopore、Hi-C、Illumina短读长测序2022[21]
AEG-9674-15.144.0215.63 10036 92896.4

TRITEX(Illumina PE/MP、10×

Genomics、Hi-C)

2022[49]
Table 1 Whole genome sequenced species from Triticeae
[1]   SUN Y Q, SHANG L G, ZHU Q H, et al. Twenty years of plant genome sequencing: achievements and challenges[J]. Trends in Plant Science, 2022, 27(4): 391-401. DOI: 10.1016/j.tplants.2021.10.006
doi: 10.1016/j.tplants.2021.10.006
[2]   FEUILLET C, SALSE J. Comparative genomics in the Triticeae[M]//FEUILLET C, MUEHLBAUER G J. Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models. Vol. 7. YorkNew, USA: Springer, 2009: 451-477. DOI: 10.1007/978-0-387-77489-3
doi: 10.1007/978-0-387-77489-3
[3]   Food and Agriculture Organization of the United Nations. FAOSTAT[EB/OL]. [2022-01-03].
[4]   AVNI R, NAVE M, BARAD O, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J]. Science, 2017, 357(6346): 93-96. DOI: 10.1126/science.aan0032
doi: 10.1126/science.aan0032
[5]   LIU M, LI Y, MA Y L, et al. The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley[J]. Plant Biotechnology Journal, 2020, 18(2): 443-456. DOI: 10.1111/pbi.13210
doi: 10.1111/pbi.13210
[6]   SATO K, MASCHER M, HIMMELBACH A, et al. Chromosome-scale assembly of wild barley accession “OUH602”[J]. G3: Genes Genomes Genetics, 2021, 11(10): jkab244. DOI: 10.1093/g3journal/jkab244
doi: 10.1093/g3journal/jkab244
[7]   WANG H W, SUN S L, GE W Y, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J]. Science, 2020, 368(6493): eaba5435. DOI: 10.1126/science.aba5435
doi: 10.1126/science.aba5435
[8]   傅向东,刘倩,李振声,等.小麦基因组研究现状与展望[J].中国科学院院刊,2018,33(9):909-914. DOI:10.16418/j.issn.1000-3045.2018.09.003
FU X D, LIU Q, LI Z S, et al. Research achievement and prospect development on wheat genome[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 909-914. (in Chinese with English abstract)
doi: 10.16418/j.issn.1000-3045.2018.09.003
[9]   SHI X L, LING H Q. Current advances in genome sequencing of common wheat and its ancestral species[J]. Crop Journal, 2018, 6(1): 15-21. DOI: 10.1016/j.cj.2017.11.001
doi: 10.1016/j.cj.2017.11.001
[10]   International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361(6403): eaar7191. DOI: 10.1126/science.aar7191
doi: 10.1126/science.aar7191
[11]   BRENCHLEY R, SPANNAGL M, PFEIFER M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature, 2012, 491(7426): 705-710. DOI: 10.1038/nature11650
doi: 10.1038/nature11650
[12]   International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345(6194): 1251788. DOI: 10.1126/science.1251788
doi: 10.1126/science.1251788
[13]   CLAVIJO B J, VENTURINI L, SCHUDOMA C, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations[J]. Genome Research, 2017, 27(5): 885-896. DOI: 10.1101/gr.217117.116
doi: 10.1101/gr.217117.116
[14]   ZIMIN A V, PUIU D, HALL R, et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum [J]. GigaScience, 2017, 6(11): gix097. DOI: 10.1093/gigascience/gix097
doi: 10.1093/gigascience/gix097
[15]   ZHU T T, WANG L, RIMBERT H, et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly[J]. The Plant Journal, 2021, 107(1): 303-314. DOI: 10.1111/tpj.15289
doi: 10.1111/tpj.15289
[16]   CHAPMAN J A, MASCHER M, BULUC A, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome[J]. Genome Biology, 2015, 16: 26. DOI: 10.1186/s13059-015-0582-8
doi: 10.1186/s13059-015-0582-8
[17]   SATO K, ABE F, MASCHER M, et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’[J]. DNA Research, 2021, 28(3): dsab008. DOI: 10.1093/dnares/dsab008
doi: 10.1093/dnares/dsab008
[18]   WALKOWIAK S, GAO L L, MONAT C, et al. Multiple wheat genomes reveal global variation in modern breeding[J]. Nature, 2020, 588(7837): 277-283. DOI: 10.1038/s41586-020-2961-x
doi: 10.1038/s41586-020-2961-x
[19]   GUO W L, XIN M M, WANG Z H, et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat[J]. Nature Communications, 2020, 11: 5085. DOI: 10.1038/s41467-020-18738-5
doi: 10.1038/s41467-020-18738-5
[20]   MARCUSSEN T, SANDVE S R, HEIER L, et al. Ancient hybridizations among the ancestral genomes of bread wheat[J]. Science, 2014, 345(6194): 1250092. DOI: 10.1126/science.1250092
doi: 10.1126/science.1250092
[21]   LI L F, ZHANG Z B, WANG Z H, et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome[J]. Molecular Plant, 2022, 15(3): 488-503. DOI: 10.1016/j.molp.2021.12.019
doi: 10.1016/j.molp.2021.12.019
[22]   LING H Q, ZHAO S C, LIU D C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu [J]. Nature, 2013, 496(7443): 87-90. DOI: 10.1038/nature11997
doi: 10.1038/nature11997
[23]   LING H Q, MA B, SHI X L, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu [J]. Nature, 2018, 557(7705): 424-428. DOI: 10.1038/s41586-018-0108-0
doi: 10.1038/s41586-018-0108-0
[24]   JIA J Z, ZHAO S C, KONG X Y, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation[J]. Nature, 2013, 496(7443): 91-95. DOI: 10.1038/nature12028
doi: 10.1038/nature12028
[25]   LUO M C, GU Y Q, YOU F M, et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor[J]. PNAS, 2013, 110(19): 7940-7945. DOI: 10.1073/pnas.1219082110
doi: 10.1073/pnas.1219082110
[26]   ZIMIN A V, PUIU D, LUO M C, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm[J]. Genome Research, 2017, 27(5): 787-792. DOI: 10.1101/gr.213405.116
doi: 10.1101/gr.213405.116
[27]   ZHAO G Y, ZOU C, LI K, et al. The Aegilops tauschii genome reveals multiple impacts of transposons[J]. Nature Plants, 2017, 3(12): 946-955. DOI: 10.1038/s41477-017-0067-8
doi: 10.1038/s41477-017-0067-8
[28]   LUO M C, GU Y Q, PUIU D, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii [J]. Nature, 2017, 551(7681): 498-502. DOI: 10.1038/nature24486
doi: 10.1038/nature24486
[29]   MACCAFERRI M, HARRIS N S, TWARDZIOK S O, et al. Durum wheat genome highlights past domestication signatures and future improvement targets[J]. Nature Genetics, 2019, 51(5): 885-895. DOI: 10.1038/s41588-019-0381-3
doi: 10.1038/s41588-019-0381-3
[30]   International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome[J]. Nature, 2012, 491(7426): 711-716. DOI: 10.1038/nature11543
doi: 10.1038/nature11543
[31]   MASCHER M, GUNDLACH H, HIMMELBACH A, et al. A chromosome conformation capture ordered sequence of the barley genome[J]. Nature, 2017, 544(7651): 427-433. DOI: 10.1038/nature22043
doi: 10.1038/nature22043
[32]   MONAT C, PADMARASU S, LUX T, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools[J]. Genome Biology, 2019, 20: 284. DOI: 10.1186/s13059-019-1899-5
doi: 10.1186/s13059-019-1899-5
[33]   MASCHER M, WICKER T, JENKINS J, et al. Long-read sequence assembly: a technical evaluation in barley[J]. The Plant Cell, 2021, 33(6): 1888-1906. DOI: 10.1093/plcell/koab077
doi: 10.1093/plcell/koab077
[34]   SATO K, TANAKA T, SHIGENOBU S, et al. Improvement of barley genome annotations by deciphering the Haruna Nijo genome[J]. DNA Research, 2016, 23(1): 21-28. DOI: 10.1093/dnares/dsv033
doi: 10.1093/dnares/dsv033
[35]   SAKKOUR A, MASCHER M, HIMMELBACH A, et al. Chromosome-scale assembly of barley cv. ‘Haruna Nijo’ as a resource for barley genetics[J]. DNA research, 2022, 29(1): dsac001. DOI: 10.1093/dnares/dsac001
doi: 10.1093/dnares/dsac001
[36]   XU W, TUCKER J R, BEKELE W A, et al. Genome assembly of the Canadian two-row malting barley cultivar AAC Synergy[J]. G3: Genes Genomes Genetics, 2021, 11(4): jkab031. DOI: 10.1093/g3journal/jkab031
doi: 10.1093/g3journal/jkab031
[37]   SCHREIBER M, MASCHER M, WRIGHT J, et al. A genome assembly of the barley ‘transformation reference’ cultivar Golden Promise[J]. G3: Genes Genomes Genetics, 2020, 10(6): 1823-1827. DOI: 10.1534/g3.119.401010
doi: 10.1534/g3.119.401010
[38]   JAYAKODI M, PADMARASU S, HABERER G, et al. The barley pan-genome reveals the hidden legacy of mutation breeding[J]. Nature, 2020, 588(7837): 284-289. DOI: 10.1038/s41586-020-2947-8
doi: 10.1038/s41586-020-2947-8
[39]   ZENG X Q, LONG H, WANG Z, et al. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau[J]. PNAS, 2015, 112(4): 1095-1100. DOI: 10.1073/pnas.1423628112
doi: 10.1073/pnas.1423628112
[40]   DAI F, WANG X L, ZHANG X Q, et al. Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley[J]. Plant Biotech-nology Journal, 2018, 16(3): 760-770. DOI: 10.1111/pbi.12826
doi: 10.1111/pbi.12826
[41]   ZENG X Q, XU T, LING Z H, et al. An improved high-quality genome assembly and annotation of Tibetan hulless barley[J]. Scientific Data, 2020, 7: 139. DOI: 10.1038/s41597-020-0480-0
doi: 10.1038/s41597-020-0480-0
[42]   GARTHWAITE A J, STEUDLE E, COLMER T D. Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity[J]. Journal of Experimental Botany, 2006, 57(3): 655-664. DOI: 10.1093/jxb/erj055
doi: 10.1093/jxb/erj055
[43]   GARTHWAITE A J, VON BOTHMER R, COLMER T D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots[J]. Journal of Experimental Botany, 2005, 56(419): 2365-2378. DOI: 10.1093/jxb/eri229
doi: 10.1093/jxb/eri229
[44]   ALAMRI S A, BARRETT-LENNARD E G, TEAKLE N L, et al. Improvement of salt and waterlogging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents[J]. Functional Plant Biology, 2013, 40(11): 1168-1178. DOI: 10.1071/fp12385
doi: 10.1071/fp12385
[45]   ISLAM S, MALIK A I, ISLAM A K M R, et al. Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents[J]. Journal of Experimental Botany, 2007, 58(5): 1219-1229. DOI: 10.1093/jxb/erl293
doi: 10.1093/jxb/erl293
[46]   KUANG L H, SHEN Q F, CHEN L Y, et al. The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies[J]. Plant Communications, 2022, 3(5): 100333. DOI: 10.1016/j.xplc.2022.100333
doi: 10.1016/j.xplc.2022.100333
[47]   LI G W, WANG L J, YANG J P, et al. A high-quality genome assembly highlights rye genomic characteristics and agrono-mically important genes[J]. Nature Genetics, 2021, 53(4): 574-584. DOI: 10.1038/s41588-021-00808-z
doi: 10.1038/s41588-021-00808-z
[48]   BAUER E, SCHMUTZER T, BARILAR I, et al. Towards a whole-genome sequence for rye (Secale cereale L.)[J]. The Plant Journal, 2017, 89(5): 853-869. DOI: 10.1111/tpj.13436
doi: 10.1111/tpj.13436
[49]   AVNI R, LUX T, MINZ-DUB A, et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement[J]. The Plant Journal, 2022, 110(1): 179-192. DOI: 10.1111/tpj.15664
doi: 10.1111/tpj.15664
[50]   YU G T, MATNY O, CHAMPOURET N, et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62 [J]. Nature Communications, 2022, 13: 1607. DOI: 10.1038/s41467-022-29132-8
doi: 10.1038/s41467-022-29132-8
[51]   MUNNS R, JAMES R A, XU B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology, 2012, 30(4): 360-364. DOI: 10.1038/nbt.2120
doi: 10.1038/nbt.2120
[1] Lihua XU,Fei SU,Junxing LI,Bin YU,Shiyi YE,Fuwen YANG,Lirong DENG,Huimin MAO,Xiufang YUAN. Molecular epidemiological analysis of porcine circovirus type 2 in Zhejiang Province from 2016 to 2020[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 644-652.
[2] Guohu CHEN,Hao WANG,Guang LI,Xiaoyan TANG,Chenggang WANG,Lei ZHANG,Jinfeng HOU,Lingyun YUAN. Genome-wide identification and bioinformatics analysis of PRX gene family in Brassica rapa[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 677-686.
[3] Miao MIAO,Caihuang XU,Zihui HUANG,Xiaodong ZHANG,Xing ZHANG,Yongping WU. Preliminary structural analysis of infectious bursal disease virus by cryo-electron microscopy[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 506-511.
[4] SHU Xinyuan, YAN Xu, PU Yehong, WANG Chao, PAN Jianwei. Action mechanisms of CRISPR/Cas system and its application in genetic improvement of crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 259-268.
[5] FAN Lihua, MO Hongfei, ZHANG Xiaofeng, SHUAI Jiangbing, CHEN Qing. Identification of swine- specific microbial genetic markers using competitive DNA hybridization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 163-172.
[6] MONIR Md. Mamun, ZHU Jun. Association analysis revealed importance of dominance effects on days to silk of maize nested association mapping (NAM) population[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 146-152.
[7] Duan Zhongqu, Zhu Jun. Research progress of genome-wide association study[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 385-393.
[8] Hao Xinying, Zhu Jun. Genome-wide association studies for identifying genetic architecture of SGRQ in smoking population[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 431-439.
[9] Lin Zhangxiang, Wang Yingying, Fu Fei, Ye Chuyu, Fan Longjiang. Complete chloroplast genome of Dongxiang wild rice and its application in phylogenetic analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 397-403.
[10] Zhang Bin, Zhu Jun. Impact of cigarette smoking and gender on genetic architecture of body mass index[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 421-430.
[11] Ye Xiaoqian, Zhao Zhonghui, Zhu Quanwu, Wang Yingying, Lin Zhangxiang, Ye Chuyu, Fan Longjiang, Xu Hairong. Entire chloroplast genome sequence of tea (Camellia sinensis cv. Longjing 43): a molecular phylogenetic analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 404-412.
[12] Xu Changwei, Zhu Jun. Impacts of cigarette smoking on epistasis and gender-specific effects of FEV1/FVC ratio in human[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 413-420.