Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 398-412    DOI: 10.3785/j.issn.1008-9209.2022.04.181
Resource utilization & environmental protection     
Preparation of single-material carrier formulation fertilizer made by material extrusion three-dimensional printing and its controlled release effect
Xin ZHANG1(),Qian WU2,Qingxu MA1,Jun YIN2,Yinfeng HE3(),Lianghuan WU1()
1.Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
3.Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315000, Zhejiang, China
Download: HTML   HTML (   PDF(7175KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As a processing technology that can rapidly fabricate customized products in small batches, three-dimensional (3D) printing has great application potential in horticultural gardens. On the basis of existing studies on controlled releasing materials for 3D printing, the carrier materials for solo nutrition were developed after a range of formulation screening. The new formulations were suitable for material extrusion 3D printing and the single-material carrier formulation fertilizer contained sodium alginate or xanthan gum as a binder, mannitol as a filler, ethanol/water with fixed ratio as a solvent, sepiolite as a thickening agent, and urea as the core fertilizer. It was confirmed that the maximum adding ratio of urea could reach 1∶4 [m (urea)∶V (solvent)] when using sodium alginate as a binder, while the maximum adding ratio could reach 3∶4 [m (urea)∶V (solvent)] when using xanthan gum as a binder. It was confirmed that the developed formulation could also be used as the carrier of other types of nutrients including KCl, K2HPO4, and ZnSO4. This work also demonstrated that it was possible to combine different nutrients and achieve element couplings by using multi-material extrusion 3D printing technology. Through the printing parameter adjustment experiment, the optimal printing was achieved when the printing speed was 200 mm/min, and the extrusion speed was 0.02 mm/s, and the extrusion height was 1 mm, and the nozzle diameter was 1 mm. The controlled release period of different formulations were further studied by the sand column leaching method. There were significant differences between the controlled release period of single-material carrier formulation fertilizers under different formulations and their post-treatments. The modified formulation with sepiolite can obviously change the release rate of single-material carrier formula fertilizer and the longest controlled release period reached 30 d.



Key wordsmaterial extrusion three-dimensional (3D) printing      new fertilizer      horticultural garden      controlled release effect     
Received: 18 April 2022      Published: 25 June 2023
CLC:  S143  
Corresponding Authors: Yinfeng HE,Lianghuan WU     E-mail: zhangxin1996@zju.edu.cn;Yinfeng.he@nottingham.ac.uk;finm@zju.edu.cn
Cite this article:

Xin ZHANG,Qian WU,Qingxu MA,Jun YIN,Yinfeng HE,Lianghuan WU. Preparation of single-material carrier formulation fertilizer made by material extrusion three-dimensional printing and its controlled release effect. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 398-412.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.04.181     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/398


材料挤出三维打印单材料载体配方肥的制备与控释效果

三维打印(three-dimensional printing, 3D打印)作为一项可以快速小批量生产定制产品的加工技术,在园艺园林方向的应用潜力巨大。本研究借鉴3D打印缓释配方相关研究,完成单材料载体配方肥各组分的初步筛选,利用材料挤出3D打印技术成功打印出以海藻酸钠或黄原胶为黏结剂、甘露醇为填充剂、固定配比的乙醇溶液为溶剂、海泡石为增稠剂、尿素为核心肥料的单材料载体配方肥,确定尿素在海藻酸钠作为黏结剂时的最高添加比例为1∶4(尿素与溶剂质量体积比),而在黄原胶作为黏结剂时的最高添加比例为3∶4(尿素与溶剂质量体积比);明确了用氯化钾、磷酸二氢钾、硫酸锌在最佳配方下替换尿素也可以实现打印;还通过多材料挤出3D打印技术进一步探讨了不同养分组合和元素耦合的打印可能性。通过打印参数调节试验明确了配方肥的最佳打印条件:打印速度200 mm/min、挤出速度0.02 mm/s、挤出高度1 mm、喷嘴直径1 mm。通过砂柱淋洗法进一步研究了不同配方肥的控释周期,发现不同配方及打印后处理下的单材料载体配方肥控释周期存在明显差异,经海泡石改良后的配方可以明显改变单材料载体配方肥的养分释放速率,其控释周期最长可达30 d。


关键词: 材料挤出三维打印,  新型肥料,  园艺园林,  控释效果 

配方

Formulation

甘露醇

Mannitol/g

海藻酸钠

Sodium alginate/g

黄原胶

Xanthan gum/g

尿素

Urea/g

溶剂体积比(乙醇∶水)

Solvent volume ratio (ethanol∶water)

溶剂

Solvent/mL

F1180.2003∶720
F2180.2053∶720
F3180.20103∶720
F4180.20153∶720
F5181.0003∶720
F6181.0053∶720
F7181.00103∶720
F8181.00153∶720
F91800.203∶720
F101800.253∶720
F111800.2103∶720
F121800.2153∶720
F131801.003∶720
F141801.053∶720
F151801.0103∶720
F161801.0153∶720
Table 1 Formulation table
Fig. 1 Experimental equipment and printing one-dimensional (1D) and 3D structural design diagramsA. Experimental 3D printer; B. “Ji” character structure; C. Printing design diagrams of the first layer with different porosities.
Fig. 2 Comparison pictures of formulations F1-F16 before and after inversionA. Front views of formulations F1-F8 (the red box marked represents solid-liquid separation); B. Front views of formulations F9-F16 (the red box marked represents solid-liquid separation); C. Upside-down views of formulations F1-F8 (the red box marked represents solid-liquid separation); D. Upside-down views of formulations F9-F16 (the red box marked represents the collapse part).
Fig. 3 Steady-state mechanical changes of viscosity and shear stress with shear rate for different formulations
Fig. 4 Dynamic loss factors for different formulations with angular frequency (A) and the average dynamic loss factors of different formulations (B)

打印参数

Printing

parameter

打印速度

Printing

speed/

(mm/min)

挤出速度

Extrusion

speed/

(mm/s)

喷嘴直径

Nozzle

diameter/

mm

温度

Temperature/

a2500.05125
b2000.05125
c1500.05125
d1000.05125
e2500.02125
f2000.02125
g1500.02125
h1000.02125
Table 2 Adjustment of printing parameters
Fig. 5 Band performance of formulations F6 and F14 at different printing and extrusion speeds
Fig. 6 Band widths and fill rates under different printing parametersA-B. Band widths under different printing parameters of formulations F6 and F14; C-D. Fill rates under different printing parameters. Please see the Table 2 for the printing parameters of a-c and e-h.
Fig. 7 Modeling structures of the printable formulations in different printing parameters
Fig. 8 Relationships between printing speed and printing time of nozzle
Fig. 9 Display diagrams of “Zhejiang University school emblem” printed by different formulations
Fig. 10 Printing display diagram of formulation F14 (A), and the N cumulative release rates of formulations F6 and F14 before and after modification (B)
Fig. 11 N cumulative release rates of formulation F14 with different porositiesP0 represents 0 porosity, and P50 represents 50% porosity, and P67 represents 67% porosity.
Fig. 12 Multi-material 3D printing designA. Display diagram of composite structure; B-C. Display diagrams of composite structure printed by different combination formulations; D. Display diagram of core-shell structure; E. Display diagram of core-shell structure printed by different formulations. F17∶F6+sepiolite; F18: Replacing urea with KCl in formulation F14.
Fig. 13 SEM images of formulations F6 and F14 before and after modification

配方

Formulation

抗压强度

Compressive strength/N

含水率

Moisture content/%

F633.50±6.251.54

F6+海泡石

F6+sepiolite

>501.48
F6+CaCl2>502.68
F1438.33±7.681.58

F14+海泡石

F14+sepiolite

>501.55
F15>501.10
Table 3 Compressive strengths and moisture contents of different formulations
[1]   周静,胡芹远,章力干,等.从供给侧改革思考我国肥料和土壤调理剂产业现状、问题与发展对策[J].中国科学院院刊,2017,32(10):1103-1110. DOI:10.16418/j.issn.1000-3045.2017.10.008
ZHOU J, HU Q Y, ZHANG L G, et al. Key scientific problems and development countermeasures of fertilizer industry based on agricultural supply-side reform[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(10): 1103-1110. (in Chinese with English abstract)
doi: 10.16418/j.issn.1000-3045.2017.10.008
[2]   赵玉芬,尹应武.我国肥料使用中存在的问题及对策[J].科学通报,2015,60(36):3527-3534. DOI:10.1360/N972015-00672
ZHAO Y F, YIN Y W. Key scientific problems on establishing green fertilizer ensurance system[J]. Chinese Science Bulletin, 2015, 60(36): 3527-3534. (in Chinese with English abstract)
doi: 10.1360/N972015-00672
[3]   KHAN M A, MINGZHI W, LIM B K, et al. Utilization of waste paper for an environmentally friendly slow-release fertilizer[J]. Journal of Wood Science, 2008, 54(2): 158-161. DOI: 10.1007/s10086-007-0924-6
doi: 10.1007/s10086-007-0924-6
[4]   WEN P, WU Z S, HE Y H, et al. Microwave-assisted synthesis of a semi-IPN slow-release nitrogen fertilizer with water absorbency from cotton stalks[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6572-6579. DOI: 10.1021/acssuschemeng.6b01466
doi: 10.1021/acssuschemeng.6b01466
[5]   MIKULA K, IZYDORCZYK G, SKRZYPCZAK D, et al. Controlled release micronutrient fertilizers for precision agriculture: a review[J]. Science of the Total Environment, 2020, 712: 136365. DOI: 10.1016/j.scitotenv.2019.136365
doi: 10.1016/j.scitotenv.2019.136365
[6]   TIMILSENA Y P, ADHIKARI R, CASEY P, et al. Enhanced efficiency fertilizers: a review of formulation and nutrient release patterns[J]. Journal of the Science of Food and Agriculture, 2015, 95(6): 1131-1142. DOI: 10.1002/jsfa.6812
doi: 10.1002/jsfa.6812
[7]   FENG C, LÜ S Y, GAO C M, et al. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3157-3166. DOI: 10.1021/acssuschemeng.5b01384
doi: 10.1021/acssuschemeng.5b01384
[8]   CHEN J, LÜ S Y, ZHANG Z, et al. Environmentally friendly fertilizers: a review of materials used and their effects on the environment[J]. Science of the Total Environment, 2018, 613/614: 829-839. DOI: 10.1016/j.scitotenv.2017.09.186
doi: 10.1016/j.scitotenv.2017.09.186
[9]   岳焕芳,王克武,孟范玉,等.新型缓控释增效肥研究进展和发展前景[J].蔬菜,2020(1):38-42.
YUE H F, WANG K W, MENG F Y, et al. Researching progress and developing prospect for new slow/controlled releasing fertilizer[J]. Vegetables, 2020(1): 38-42. (in Chinese with English abstract)
[10]   黄允,徐天成,高恒宽,等.缓控释肥应用研究进展[J].湖北农业科学,2020,59():32-36. DOI:10.14088/j.cnki.issn0439-8114.2020.S1.008
HUANG Y, XU T C, GAO H K, et al. Research progress in the application of slow and controlled release fertilizers[J]. Hubei Agricultural Sciences, 2020, 59(): 32-36. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2020.S1.008
[11]   TIAN H Y, LIU Z G, ZHANG M, et al. Biobased polyure-thane, epoxy resin, and polyolefin wax composite coating for controlled-release fertilizer[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5380-5392. DOI: 10.1021/acsami.8b16030
doi: 10.1021/acsami.8b16030
[12]   高璐阳,王怀利,王晓飞,等.我国发展缓控释肥的意义及前景[J].磷肥与复肥,2015,30(4):14-17. DOI:10.3969/j.issn.1007-6220.2015.04.007
GAO L Y, WANG H L, WANG X F, et al. The significance and prospect of slow/controlled release fertilizer development in China[J]. Phosphate Fertilizer and Compound Fertilizer, 2015, 30(4): 14-17. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6220.2015.04.007
[13]   MALHOTRA S K. Water soluble fertilizers in horticultural crops—an appraisal[J]. Indian Journal of Agricultural Sciences, 2016, 86(10): 1245-1256.
[14]   ZULFIQAR F, NAVARRO M, ASHRAF M, et al. Nano-fertilizer use for sustainable agriculture: advantages and limitations[J]. Plant Science, 2019, 289: 110270. DOI: 10.1016/j.plantsci.2019.110270
doi: 10.1016/j.plantsci.2019.110270
[15]   蒋玉根,邵赛男,蒋沈悦,等.施肥对连作大棚蔬菜产量、土壤养分和微生物种群的影响[J].浙江农业科学,2020,61(5):927-931. DOI:10.16178/j.issn.0528-9017.20200537
JIANG Y G, SHAO S N, JIANG S Y, et al. Influence of fertilization on the production of greenhouse vegetables, soil nutrient and microbial species group[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(5): 927-931. (in Chinese with English abstract)
doi: 10.16178/j.issn.0528-9017.20200537
[16]   李秋杰,蒋细旺.我国花卉肥料的现状及分析[J].长江大学学报(自然科学版),2012,9(3):11-14. DOI:10.3969/j.issn.1673-1409(S).2012.03.004
LI Q J, JIANG X W. Current situation and analysis of flower fertilizers in my country[J]. Journal of Yangtze University (Natural Science Edition), 2012, 9(3): 11-14. (in Chinese)
doi: 10.3969/j.issn.1673-1409(S).2012.03.004
[17]   GOLAFSHAN N, VORNDRAN E, ZAHARIEVSKI S, et al. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model[J]. Biomaterials, 2020, 261: 120302. DOI: 10.1016/j.biomaterials.2020.120302
doi: 10.1016/j.biomaterials.2020.120302
[18]   MURCIA D H, GENEDY M, TAHA M M R. Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete[J]. Construction and Building Materials, 2020, 262: 120559. DOI: 10.1016/j.conbuildmat.2020.120559
doi: 10.1016/j.conbuildmat.2020.120559
[19]   李彬,顾海,张捷,等.固相含量对单螺杆挤出式3D打印PLZT陶瓷浆料流动性能的影响[J].机械工程材料,2020,44(11):111-114. DOI:10.11973/jxgccl202010020
LI B, GU H, ZHANG J, et al. Effect of solid content on PLZT ceramic slarry flowability in 3D printing by single screw extrusion mode[J]. Materials for Mechanical Engineering, 2020, 44(11): 111-114. (in Chinese with English abstract)
doi: 10.11973/jxgccl202010020
[20]   FANOUS M, GOLD S, HIRSCH S, et al. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance[J]. European Journal of Phar-maceutical Sciences, 2020, 155: 105558. DOI: 10.1016/j.ejps.2020.105558
doi: 10.1016/j.ejps.2020.105558
[21]   朱亮亮.3D打印:设计革命与伦理反思[J].装饰,2018(5):140-141. DOI:10.16272/j.cnki.cn11-1392/j.2018.05.037
ZHU L L. 3D printing: design revolution and ethical reflection[J]. Zhuangshi, 2018(5): 140-141. (in Chinese)
doi: 10.16272/j.cnki.cn11-1392/j.2018.05.037
[22]   American Society for Testing and Materials (ASTM). Standard Terminology for Additive Manufacturing Technology [S]. West Conshohocken, PA, USA: ASTM International, 2012.
[23]   KIRCHMAJER D M, GORKIN R, PANHUIS M I H. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing[J]. Journal of Materials Chemistry B, 2015, 3(20): 4105-4117. DOI: 10.1039/c5tb00393h
doi: 10.1039/c5tb00393h
[24]   OZBOLAT I T, HOSPODIUK M. Current advances and future perspectives in extrusion-based bioprinting[J]. Bioma-terials, 2016, 76: 321-343. DOI: 10.1016/j.biomaterials.2015.10.076
doi: 10.1016/j.biomaterials.2015.10.076
[25]   KUO C C, QIN H T, CHENG Y L, et al. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying[J]. Food Hydrocolloids, 2020, 111: 106262. DOI: 10.1016/j.foodhyd.2020.106262
doi: 10.1016/j.foodhyd.2020.106262
[26]   MOHAMMADI N, SHARIATMADARI H, KHADEMI H, et al. Coating of sepiolite-chitosan nanocomposites onto urea increases nitrogen availability and its use efficiency in maize[J]. Archives of Agronomy and Soil Science, 2020, 66(7): 884-896. DOI: 10.1080/03650340.2019.1643842
doi: 10.1080/03650340.2019.1643842
[27]   薛海龙,许文年,刘大翔,等.几种聚合材料包膜尿素的研制及评价方法研究[J].中国农业科技导报,2017,19(4):92-99. DOI:10.13304/j.nykjdb.2016.624
XUE H L, XU W N, LIU D X, et al. Studies on preparation and evaluation method of several polymeric materials coated urea[J]. Journal of Agricultural Science and Technology, 2017, 19(4): 92-99. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2016.624
[28]   何其辉,谭长银,曹雪莹,等.肥料对土壤重金属有效态及水稻幼苗重金属积累的影响[J].环境科学研究,2018,31(5):942-951. DOI:10.13198/j.issn.1001-6929.2018.01.18
HE Q H, TAN C Y, CAO X Y, et al. Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedling[J]. Research of Environmental Sciences, 2018, 31(5): 942-951. (in Chinese with English abstract)
doi: 10.13198/j.issn.1001-6929.2018.01.18
[29]   MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785. DOI: 10.1038/nbt.2958
doi: 10.1038/nbt.2958
[30]   CHANG C C, BOLAND E D, WILLIAMS S K, et al. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 98B(1): 160-170. DOI: 10.1002/jbm.b.31831
doi: 10.1002/jbm.b.31831
[31]   MÜLLER M, FISCH P, MOLNAR M, et al. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering[J]. Materials Science and Engineering C, 2020, 108: 110510. DOI: 10.1016/j.msec.2019.110510
doi: 10.1016/j.msec.2019.110510
[32]   SAGLE L B, ZHANG Y J, LITOSH V A, et al. Investigating the hydrogen-bonding model of urea denaturation[J]. Journal of the American Chemical Society, 2009, 131(26): 9304-9310. DOI: 10.1021/ja9016057
doi: 10.1021/ja9016057
[33]   余振宇,姜绍通,潘丽军,等.芋头浆的流变特性[J].食品科学,2015,36(7):36-40. DOI:10.7506/spkx1002-6630-201507007
YU Z Y, JIANG S T, PAN L J, et al. Rheological properties of taro pulp[J]. Food Science, 2015, 36(7): 36-40. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201507007
[34]   LIU Z B, ZHANG M, BHANDARI B, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering, 2018, 220: 76-82. DOI: 10.1016/j.jfoodeng.2017.04.017
doi: 10.1016/j.jfoodeng.2017.04.017
[35]   KIM H, RYU K H, BAEK D, et al. 3D printing of polyethylene terephthalate glycol-sepiolite composites with nanoscale orientation[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23453-23463. DOI: 10.1021/acsami.0c03830
doi: 10.1021/acsami.0c03830
[36]   WONG R B K, LELIEVRE J. Viscoelastic behavior of wheat starch pastes[J]. Rheologica Acta, 1981, 20(3): 299-307.
[37]   COSTAKIS W J, RUESCHHOFF L M, DIAZ-CANO A I, et al. Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions[J]. Journal of the European Ceramic Society, 2016, 36(14): 3249-3256. DOI: 10.1016/j.jeurceramsoc.2016.06.002
doi: 10.1016/j.jeurceramsoc.2016.06.002
[38]   ZHU S C, STIEGER M A, VAN DER GOOT A J, et al. Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behavior[J]. Innovative Food Science & Emerging Technologies, 2019, 58: 102214. DOI: 10.1016/j.ifset.2019.102214
doi: 10.1016/j.ifset.2019.102214
[39]   WILSOB A, ANUKIRUTHIKA T, MOSES J A, et al. Customized shapes for chicken meat-based products: feasibility study on 3D-printed nuggets[J]. Food and Bioprocess Tech-nology, 2020, 13(11): 1968-1983. DOI: 10.1007/s11947-020-02537-3
doi: 10.1007/s11947-020-02537-3
[40]   SAHA D, BHATTACHARYA S. Hydrocolloids as thickening and gelling agents in food: a critical review[J]. Journal of Food Science & Technology, 2010, 47(6): 587-597. DOI: 10.1007/s13197-010-0162-6
doi: 10.1007/s13197-010-0162-6
[41]   SWORN G. Xanthan Gum, Food Stabilizers, Thickeners and Gelling Agents[M]. Oxford, UK: Blackwell Publishing Ltd, 2010: 325-342.
[42]   WANG Y F, LIU M Z, NI B L, et al. κ-carrageenan-codium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anti-compaction properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1413-1422. DOI: 10.1021/ie2020526
doi: 10.1021/ie2020526
[43]   FISCHER P, WINDHAB E J. Rheology of food materials[J]. Current Opinion in Colloid & Interface Science, 2011, 16(1): 36-40. DOI: 10.1016/j.cocis.2010.07.003
doi: 10.1016/j.cocis.2010.07.003
[44]   CHAISAWANG M, SUPHANTHARIKA M. Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch[J]. Carbohydrate Polymers, 2005, 61(3): 288-295. DOI: 10.1016/j.carbpol.2005.04.002
doi: 10.1016/j.carbpol.2005.04.002
[45]   GAO T, GILLISPIE G J, COPUS J S, et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach[J]. Biofabrication, 2018, 10(3): 034106. DOI: 10.1088/1758-5090/aacdc7
doi: 10.1088/1758-5090/aacdc7
[46]   HUANG M S, ZHANG M, BHANDARI B, et al. Improving the three-dimensional printability of taro paste by the addition of additives[J]. Journal of Food Process Engineering, 2020, 43(5): e13090. DOI: 10.1111/jfpe.13090
doi: 10.1111/jfpe.13090
[47]   ATTALLA R, LING C, SELVAGANAPATHY P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications[J]. Biomedical Microdevices, 2016, 18(1): 17. DOI: 10.1007/s10544-016-0042-6
doi: 10.1007/s10544-016-0042-6
[48]   YANG F L, ZHANG M, BHANDARI B, et al. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters[J]. LWT-Food Science and Technology, 2018, 87: 67-76. DOI: 10.1016/j.lwt.2017.08.054
doi: 10.1016/j.lwt.2017.08.054
[49]   杨皓天,万腾.秸秆炭基肥料制粒机机械结构与性能优化设计[J].农机化研究,2022,44(11):253-258. DOI:10.13427/j.cnki.njyi.2022.11.009
YANG H T, WAN T. Mechanical structure and performance optimization design of straw carbon materials fertilizer granulator[J]. Journal of Agricultural Mechanization Research, 2022, 44(11): 253-258. (in Chinese with English abstract)
doi: 10.13427/j.cnki.njyi.2022.11.009
[50]   NAZ M Y, SULAIMAN S A. Slow release coating remedy for nitrogen loss from conventional urea: a review[J]. Journal of Controlled Release, 2016, 225: 109-120. DOI: 10.1016/j.jconrel.2016.01.037
doi: 10.1016/j.jconrel.2016.01.037
[51]   KHALED S A, BURLEY J C, ALEXANDER M R, et al. 3D printing of tablets containing multiple drugs with defined release profiles[J]. International Journal of Pharmaceutics, 2015, 494(2): 643-650. DOI: 10.1016/j.ijpharm.2015.07.067
doi: 10.1016/j.ijpharm.2015.07.067
[52]   DU C W, ZHOU J M, SHAVIV A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers[J]. Journal of Polymers and the Environment, 2006, 14(3): 223-230. DOI: 10.1007/s10924-006-0025-4
doi: 10.1007/s10924-006-0025-4
[53]   RANGARAHJAN S, QI G, VENKATARAMAN N, et al. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2000, 83(7): 1663-1669. DOI: 10.1111/j.1151-2916.2000.tb01446.x
doi: 10.1111/j.1151-2916.2000.tb01446.x
No related articles found!