Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (5): 583-593    DOI: 10.3785/j.issn.1008-9209.2021.12.031
Plant protection     
Cloning and functional analysis of geranyllinalool synthase gene from Brassica oleracea
Yiping WANG1(),Yang GE1,Yixin ZHANG1,Asim MUNAWAR1,Yadong ZHANG1,Lijuan MAO2,Zengrong ZHU1,Wenwu ZHOU1()
1.Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(3360KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Terpenoids play important biological and ecological roles in plant defense against the pests’ stress, and geranyllinalool synthase (GES) is a key enzyme in the biosynthetic pathway of terpenoids. In order to understand the function of GES in Brassica oleracea, wecloned the BoGES gene by polymerase chain reaction and analyzed its expression levels under different biological stresses, after that we studied the recombinant protein by prokaryotic expression and analyzed its biochemical functions. The results showed that the amino acid sequence of BoGESprotein was highly conserved in Brassicaceae, indicating its conserved function in these plants. The expression of BoGES gene could be significantly induced by diamondback moth (DBM) damage, Pst DC3000 infection, and salicylic acid and methyl jasmonate treatments, suggesting its functions in response to the biological stresses. BoGES protein could catalyze the formation of geranyllinalool from the substrate geranylgeranyl diphosphate (GGPP). Moreover, we measured the choice response of the parasitoid wasps to different concentrations of geranyllinalool via the Y-tube olfactometer, and found that this chemical could attract the parasitoid wasps. In conclusion, this study systemically analyzed the function of BoGES gene in B. oleracea, which could provide the scientific basis for further study of the biological and ecological functions of terpene synthase and terpenoids in Brassicaceae plants.



Key wordsBrassica oleracea      terpene synthase      biological stress      geranyllinalool      geranyllinalool synthase     
Received: 03 December 2021      Published: 02 November 2022
CLC:  S 635.1  
Corresponding Authors: Wenwu ZHOU     E-mail: wangyiping@zju.edu.cn;wenwuzhou@zju.edu.cn
Cite this article:

Yiping WANG,Yang GE,Yixin ZHANG,Asim MUNAWAR,Yadong ZHANG,Lijuan MAO,Zengrong ZHU,Wenwu ZHOU. Cloning and functional analysis of geranyllinalool synthase gene from Brassica oleracea. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 583-593.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.12.031     OR     https://www.zjujournals.com/agr/Y2022/V48/I5/583


结球甘蓝香叶基芳樟醇合酶基因的克隆及功能分析

萜类化合物在植物防御病虫害等胁迫中具有重要的生物学和生态学功能,香叶基芳樟醇合酶(geranyllinalool synthase, GES)是萜类合成途径中的关键酶。为解析结球甘蓝中GES的功能,本研究采用聚合酶链反应方法克隆了该基因,检测其在生物胁迫诱导下的表达特性,并对其蛋白质的原核表达特性及生化功能进行了研究和测定。结果表明:BoGES蛋白质的氨基酸序列在十字花科植物中高度保守;小菜蛾、丁香假单胞菌(Pst DC3000)、水杨酸、茉莉酸甲酯诱导均能上调BoGES基因的表达,说明该基因参与生物胁迫诱导的反应;该蛋白质能够以香叶基香叶基焦磷酸为底物催化合成香叶基芳樟醇。此外,用“Y”型嗅觉仪测定玉米螟赤眼蜂对不同浓度香叶基芳樟醇的行为反应,发现香叶基芳樟醇能够吸引赤眼蜂。综上所述,本研究对结球甘蓝中的BoGES基因功能进行了系统研究,为进一步研究十字花科植物中萜类合酶及萜类化合物的生物学和生态学功能提供了科学依据。


关键词: 结球甘蓝,  萜类合酶,  生物胁迫,  香叶基芳樟醇,  香叶基芳樟醇合酶 

基因名称

Gene name

作用

Function

正向引物序列(5′→3′)

Forward primer sequence (5′→3′)

反向引物序列(5′→3′)

Reverse primer sequence (5′→3′)

GES基因克隆ATGAAGTTCCCTTACGGTTCTTCGCACCTTGCTTCTATGA
GAPDH内参基因TCCACCATTGATTCTTCTCTGTCAGCCAAATCAACAACTCTC
GESq目的基因CGCTCAACAACTTGACTTACGGCAAGACCTCTAGATATGC
Table 1 Primer information
Fig. 1 Electrophoregram of PCR product of BoGES gene1: Undigested plasmid; 2: Plasmid digested by Pvu Ⅱ; M: 1 kb DNA marker. The blue arrow indicates the target band.
Fig. 2 Analysis of BoGES gene sequence in B. oleraceaA.Prediction of cis-elements in the upstream region of the start codon of BoGES; B. Predicted tertiary structure of BoGES protein; C. Multiple sequence alignments of BoGES with AtGES and NbGES amino acid sequences (the red box indicates the conserved domain of protein).
Fig. 3 Phylogenetic tree of GES genes in different plants
Fig. 4 BoGES gene expression levels after DBM damage (A) and Pst DC3000 infection (B)Double asterisks (**), triple asterisks (***), and quadruple asterisks (****) indicate significant differences among different treatments at the same treatment time at the 0.01, 0.001, and 0.000 1 probability levels, respectively.
Fig. 5 BoGES gene expression levels after exogenous MeJA (A) and SA (B) applicationsSingle asterisk (*), double asterisks (**), and triple asterisks (***) indicate significant differences among different treatments at the same treatment time at the 0.05, 0.01, and 0.001 probability levels, respectively.
Fig. 6 SDS-PAGE detection of BoGES recombinant protein expressionA. Electrophoretogram of BoGES recombinant protein expression induced by different concentrations of IPTG after overnight at 16 ℃‍; B. Electrophoretogram of inclusion of BoGES recombinant protein after renaturation. 1: Protein marker; 2: Supernatant of thallus lysis; 3: Bacterial lysis precipitate; 4: Supernatant of the bacterial lysis precipitate washed by washing buffer 1; 5: Precipitate of the bacterial lysis precipitate washed by washing buffer 1; 6: Supernatant of the bacterial lysis precipitate washed by washing buffer 2; 7: Precipitate of the bacterial lysis precipitate washed by washing buffer 2; 8: Protein after renaturation.
Fig. 7 GC-MS detection of the BoGES recombinant protein productsA. Chromatogram for the products taking GGPP as the substrate; B. Chromatogram for the products taking GPP as the substrate; C-D. Chromatograms of major peak 1 and the authentic standard of geranyllinalool.
 
[1]   ZENG L T, ZHOU Y, GUI J D, et al. Formation of volatile tea constituent indole during the oolong tea manufacturing process[J]. Journal of Agricultural & Food Chemistry, 2016, 64(24): 5011-5019. DOI:10.1021/acs.jafc.6b01742
doi: 10.1021/acs.jafc.6b01742
[2]   BOUTANAEV A M, MOSES T, ZI J C, et al. Investigation of terpene diversification across multiple sequenced plant genomes[J]. PNAS, 2015, 112(1): E81-E88. DOI:10.1073/pnas.1419547112
doi: 10.1073/pnas.1419547112
[3]   刘琬菁,吕海舟,李滢,等.植物萜类合酶研究新进展[J].植物生理学报,2017,53(7):1139-1149. DOI:10.13592/j.cnki.ppj.2016.0513
LIU W J, LÜ H Z, LI Y, et al. The new advance of terpene synthase research in the plant[J]. Plant Physiology Journal, 2017, 53(7): 1139-1149. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2016.0513
[4]   黄宇萍.小菜蛾诱导的甘蓝挥发性物质及其效应[D].福州:福建农林大学,2012.
HUANG Y P. Volatiles from Brassica oleracea infested by Plutella xylostella (L.) and their effects[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012. (in Chinese with English abstract)
[5]   TUMEN I, ELLER F J, GLAUSEN C A, et al. Antifungal activity of heartwood extracts from three Juniperus species[J]. BioResources, 2012, 8(1): 12-20.
[6]   CHEN X J, CHEN H, YUAN J S, et al. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae [J]. Plant Biotechnology Journal, 2018, 16(10): 1778-1787. DOI:10.1111/pbi.12914
doi: 10.1111/pbi.12914
[7]   MCGARVEY D J, CROTEAU R. Terpenoid metabolism[J]. The Plant Cell, 1995, 7(7): 1015-1026. DOI:10.2307/3870054
doi: 10.2307/3870054
[8]   VRANOVÁ E, COMAN D, GRUISSEM W. Structure and dynamics of the isoprenoid pathway network[J]. Molecular Plant, 2012, 5(2): 318-333. DOI:10.1093/mp/sss015
doi: 10.1093/mp/sss015
[9]   李海亮,高星,徐福利,等.芍药花精油化学成分及其抗氧化活性[J].西北农林科技大学学报(自然科学版),2017,45(5):204-210. DOI:10.13207/j.cnki.jnwafu.2017.05.028
LI H L, GAO X, XU F L, et al. Chemical composition and antioxidant activities of essential oil from Paeonia lactiflora flowers[J]. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(5): 204-210. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2017.05.028
[10]   张丽芳,房桂珍,秦旭荣.一种替普瑞酮的制备方法:CN103739470A[P].2014-04-23[2021-11-21]. . DOI:10.1088/0256-307x/23/11/034
ZHANG L F, FANG G Z, QING X R. [P]. 2014-04-23[2021-11-21]. (in Chinese)
doi: 10.1088/0256-307x/23/11/034
[11]   PAREJA M, QVARFORDT E, WEBSTER B, et al. Herbivory by a phloem-feeding insect inhibits floral volatile production[J]. PLoS ONE, 2012, 7(2): e31971. DOI:10.1371/journal.pone.0031971
doi: 10.1371/journal.pone.0031971
[12]   刘丹凤.陆地棉间接防御物质萜烯同系物的合成代谢研究[D].北京:中国农业科学院,2018. DOI:10.26464/epp2018011
LIU D F. Anabolism of homoterpenes involved in indirect defense of Gossipium hirsutum [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract)
doi: 10.26464/epp2018011
[13]   LEE S, BADIEYAN S, BEVAN D R, et al. Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis [J]. PNAS, 2010,107(49):21205-21210. DOI:10.1073/pnas.1009975107
doi: 10.1073/pnas.1009975107
[14]   BRILLADA C, NISHIHARA M, SHIMODA T, et al. Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E, E)-geranyllinalool synthase attracts generalist and specialist predators in different manners[J]. New Phytologist, 2013, 200(4): 1200-1211. DOI:10.1111/nph.12442
doi: 10.1111/nph.12442
[15]   HERDE M, GÄRTNER K, KÖLLNER T G, et al. Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT[J]. The Plant Cell, 2008, 20(4): 1152-1168. DOI:10.1105/tpc.106.049478
doi: 10.1105/tpc.106.049478
[16]   LI W, WANG L N, ZHOU F, et al. Overexpression of the homoterpene synthase gene, OsCYP92C21, increases emissions of volatiles mediating tritrophic interactions in rice[J]. Plant, Cell and Environment, 2020, 44(3): 948-963. DOI:10.1111/pce.13924
doi: 10.1111/pce.13924
[17]   LI T, BLANDE J D, HOLOPAINEN J K. Atmospheric transformation of plant volatiles disrupts host plant finding[J]. Scientific Reports, 2016, 6: 33851. DOI:10.1038/srep33851
doi: 10.1038/srep33851
[18]   PICKETT J A, KHAN Z R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges[J]. New Phytologist, 2016, 212(4): 856-870. DOI:10.1111/nph.14274
doi: 10.1111/nph.14274
[19]   ARIMURA G, GARMS S, MAFFEI M, et al. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling[J]. Planta, 2008, 227(2): 453-464. DOI:10.1007/s00425-007-0631-y
doi: 10.1007/s00425-007-0631-y
[20]   SU P, HU T Y, LIU Y J, et al. Functional characterization of NES and GES responsible for the biosynthesis of (E)-nerolidol and (E, E)-geranyllinalool in Tripterygium wilfordii [J]. Scientific Reports, 2017, 7: 40851. DOI:10.1038/srep40851
doi: 10.1038/srep40851
[21]   LIU G F, LIU J J, HE Z R, et al. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis [J]. Plant, Cell and Environment, 2018, 41(1): 176-186. DOI:10.1111/pce.13080
doi: 10.1111/pce.13080
[22]   FU J Y, REN F, LU X, et al. A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism[J]. Plant Physiology, 2016, 170(2): 742-751. DOI:10.1104/pp.15.01727
doi: 10.1104/pp.15.01727
[23]   李威,林拥军,周菲.萜烯同系物DMNT和TMTT的研究进展[J].植物保护学报,2018,45(5):946-953. DOI:10.13802/j.cnki.zwbhxb.2018.2018924
LI W, LIN Y J, ZHOU F. The recent research progress on DMNT and TMTT in plants[J]. Journal of Plant Protection, 2018, 45(5): 946-953. (in Chinese with English abstract)
doi: 10.13802/j.cnki.zwbhxb.2018.2018924
[1] Tong ZHANG,Yiping WANG,Yang GE,Eric NTIRI,Wenwu ZHOU. Identification and functional analysis of α-farnesene synthase gene from the cabbage Brassica oleracea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 182-192.