Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (5): 543-556    DOI: 10.3785/j.issn.1008-9209.2021.09.231
Reviews     
Review on regulatory role of morphogens in the formation of dorsal-ventral pattern of vertebrate neural tube
Cong LIU(),Pengfei XU()
College of Medicine, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(4610KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In vertebrates, the development of the central nervous system depends on the correct patterning of the neural tube along its anterior-posterior and dorsal-ventral axes in the early embryo as well as the underlying regulation of the cell differentiation. During the neural tube formation, the arrangement of the precursor cells depends on the regulation of different morphogen concentration gradients. The most important morphogens during the neural tube development are the bone morphogenetic protein (BMP) secreted from the roof plate and the Sonic hedgehog (Shh) secreted from the floor plate, which would form an antiparallel concentration gradient in the neural tube. These morphogen concentration gradients could further provide the positional information to the precursor cells and gradually determine their differentiation fate. In this paper, we summarized the process of neural tube development in different model organisms, focusing on the important role of two morphogens of BMP and Shh in the formation of dorsal-ventral pattern of the neural tube. Besides, a better understanding of the developmental mechanism of the nervous system in vivo would also provide some insights on the construction of neural tube organoids in vitro. Therefore, we also pointed out the latest progress of neural tube organoids and discussed the future perspective of this field.



Key wordsmorphogen      neural tube development      bone morphogenetic protein      Sonic hedgehog      organoid     
Received: 23 September 2021      Published: 02 November 2022
CLC:  Q 593.4  
Corresponding Authors: Pengfei XU     E-mail: liucongcc@zju.edu.cn;pengfei_xu@zju.edu.cn
Cite this article:

Cong LIU,Pengfei XU. Review on regulatory role of morphogens in the formation of dorsal-ventral pattern of vertebrate neural tube. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 543-556.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.09.231     OR     https://www.zjujournals.com/agr/Y2022/V48/I5/543


脊椎动物神经管背-腹图式形成中形态素的调控作用综述

脊椎动物中枢神经系统的形成依赖于胚胎早期神经管前-后、背-腹等图式的正确建立和后期细胞分化的精细调控。在神经管形成过程中,其前体细胞受到形态素浓度梯度的调控,沿着身体背-腹轴方向呈有规律的排列,其中最重要的2种形态素是骨形成蛋白(bone morphogenetic protein, BMP)和音猬因子(Sonic hedgehog, Shh)。从顶板分泌的BMP和从底板分泌的Shh在神经管中形成反向平行的浓度梯度,神经前体细胞在这些形态素的作用下获得其位置信息并逐渐决定其分化命运。本文系统总结了不同模式生物神经管发育的相关研究,着重综述了BMP和Shh这2种形态素在脊椎动物神经管背-腹图式形成中的重要作用。此外,对神经系统在体内发育机制的更深理解可为体外构建神经管类器官提供指导,因此,在本综述的最后,我们总结了神经管类器官培养的最新进展,并探讨了其未来发展策略。


关键词: 形态素,  神经管发育,  骨形成蛋白,  音猬因子,  类器官 
Fig. 1 Dorsal-ventral pattern of vertebrate neural tubeBMP: Bone morphogenetic protein; Shh: Sonic hedgehog; RP: Roof plate; FP: Floor plate; dP1-dP6: Dorsal progenitor domains; dI1-dI6: Dorsal interneuron populations; p0-p3 and pMN: Ventral progenitor domains; v0-v3 and MN: Ventral interneuron populations.
Fig. 2 Formation process of neural tube
Fig. 3 BMP concentration gradient shifting process during the zebrafish early developmentA. At the beginning of the gastrulation, the BMP antagonists secreted from the dorsal organizer result in a ventral to dorsal (high to low) BMP concentration gradient. B. At the beginning of the neurulation, because of the convergence and extension, the neuroectodermal cells migrate to the dorsal midline; at the same time, the neural plate forms. At this moment, the BMP concentration gradient is higher at the lateral, and the cells at the midline start to invaginate where the BMP concentration is the lowest. C. When the neurulation is completed and the neural tube is formed, the cells that originate from the most ventral side of the gastrula now migrate to the most dorsal side of the neural tube, where forms an eventual dorsal to ventral (high to low) BMP concentration gradient. LV: Lateral view; DV: Dorsal view; AV: Animal view; NP: Neural plate; NT: Neural tube (the same as below).
Fig. 4 Formation process of roof plate in neural tubeA. Neural plate stage; B. Early neural crest cell stage; C. Roof plate formation stage.
Fig. 5 BMP signaling transductionP: Phosphate group.
Fig. 6 Production, secretion and transduction of Shh signaling
Fig. 7 Schematic description of applying Shh concentration gradient to instruct forebrain organoid formation in vitroA. A doxycycline-inducible Shh H9 cell line (iSHH) was generated using transcription activator-like effector nucleases (TALEN) homologous recombination technology; B. iSHH cells were aggregated and fused to one side of the organoid to establish the Shh concentration gradient; C. By exposed to different concentrations of Shh, a forebrain organoid was induced and could recapitulate the topography of the in vivo forebrain, which included multiple cell types like neocortex, lateral ganglionic eminence, medial ganglionic eminence, anterior hypothalamus, and ventro-posterior hypothalamus.
[1]   WOLPERT L. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 1969, 25(1): 1-47.
[2]   LE DRÉAU G, MARTÍ E. Dorsal-ventral patterning of the neural tube: a tale of three signals[J]. Developmental Neurobiology, 2012, 72(12): 1471-1481. DOI:10.1002/dneu.22015
doi: 10.1002/dneu.22015
[3]   UYGUR A, YOUNG J, HUYCKE T R, et al. Scaling pattern to variations in size during development of the vertebrate neural tube[J]. Developmental Cell, 2016, 37(2): 127-135. DOI:10.1016/j.devcel.2016.03.024
doi: 10.1016/j.devcel.2016.03.024
[4]   ZAGORSKI M, TABATA Y, BRANDENBERG N, et al. Decoding of position in the developing neural tube from antiparallel morphogen gradients[J]. Science, 2017, 356(6345): 1379-1383. DOI:10.1126/science.aam5887
doi: 10.1126/science.aam5887
[5]   DESSAUD E, YANG L L, HILL K, et al. Interpretation of the Sonic hedgehog morphogen gradient by a temporal adaptation mechanism[J]. Nature, 2007, 450(7170): 717-720. DOI:10.1038/nature06347
doi: 10.1038/nature06347
[6]   CHESNUTT C, BURRUS L W, BROWN A M C, et al. Coordinate regulation of neural tube patterning and proliferation by TGFβ and WNT activity[J]. Developmental Biology, 2004, 274(2): 334-347. DOI:10.1016/j.ydbio.2004.07.019
doi: 10.1016/j.ydbio.2004.07.019
[7]   LIU Y, HELMS A W, JOHNSON J E. Distinct activities of Msx1 and Msx3 in dorsal neural tube development[J]. Development, 2004, 131(5): 1017-1028. DOI:10.1242/dev.00994
doi: 10.1242/dev.00994
[8]   CEDERQUIST G Y, ASCIOLLA J J, TCHIEU J, et al. Specification of positional identity in forebrain organoids[J]. Nature Biotechnology, 2019, 37(4): 436-444. DOI:10.1038/s41587-019-0085-3
doi: 10.1038/s41587-019-0085-3
[9]   ZIMMERMAN L B, DE JESÚS-ESCOBAR J M, HARLAND R M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4[J]. Cell, 1996, 86(4): 599-606. DOI:10.1016/s0092-8674(00)80133-6
doi: 10.1016/s0092-8674(00)80133-6
[10]   PICCOLO S, SASAI Y, LU B, et al. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4[J]. Cell, 1996, 86(4): 589-598. DOI:10.1016/s0092-8674(00)80132-4
doi: 10.1016/s0092-8674(00)80132-4
[11]   FAINSOD A, DEIβLER K, YELIN R, et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4 [J]. Mechanisms of Development, 1997, 63(1): 39-50. DOI:10.1016/s0925-4773(97)00673-4
doi: 10.1016/s0925-4773(97)00673-4
[12]   LIU A M, NISWANDER L A. Bone morphogenetic protein signalling and vertebrate nervous system development[J]. Nature Reviews Neuroscience, 2005, 6(12): 945-954. DOI:10.1038/nrn1805
doi: 10.1038/nrn1805
[13]   NIKOLOPOULOU E, GALEA G L, ROLO A, et al. Neural tube closure: cellular, molecular and biomechanical mechanisms[J]. Development, 2017, 144(4): 552-566. DOI:10.1242/dev.145904
doi: 10.1242/dev.145904
[14]   TAWK M, ARAYA C, LYONS D A, et al. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis[J]. Nature, 2007, 446(7137): 797-800. DOI:10.1038/nature05722
doi: 10.1038/nature05722
[15]   TANABE Y, JESSELL T M. Diversity and pattern in the developing spinal cord[J]. Science, 1996, 274(5290): 1115-1123. DOI:10.1126/science.274.5290.1115
doi: 10.1126/science.274.5290.1115
[16]   SHI Y G, MASSAGUÉ J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6): 685-700. DOI:10.1016/s0092-8674(03)00432-x
doi: 10.1016/s0092-8674(03)00432-x
[17]   LE DRÉAU G, MARTÍ E. The multiple activities of BMPs during spinal cord development[J]. Cellular and Molecular Life Sciences, 2013, 70(22): 4293-4305. DOI:10.1007/s00018-013-1354-9
doi: 10.1007/s00018-013-1354-9
[18]   NITZAN E, KRISPIN S, PFALTZGRAFF E R, et al. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells[J]. Development, 2013, 140(11): 2269-2279. DOI:10.1242/dev.093294
doi: 10.1242/dev.093294
[19]   PLA P, MONSORO-BURQ A H. The neural border: induction, specification and maturation of the territory that generates neural crest cells[J]. Developmental Biology, 2018, 444(): S36-S46. DOI:10.1016/j.ydbio.2018.05.018
doi: 10.1016/j.ydbio.2018.05.018
[20]   NITZAN E, AVRAHAM O, KAHANE N, et al. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate[J]. BMC Biology, 2016, 14: 23. DOI:10.1186/s12915-016-0245-6
doi: 10.1186/s12915-016-0245-6
[21]   LITTLE S C, MULLINS M C. Bone morphogenetic protein heterodimers assemble heteromeric typeⅠreceptor complexes to pattern the dorsoventral axis[J]. Nature Cell Biology, 2009, 11(5): 637-643. DOI:10.1038/ncb1870
doi: 10.1038/ncb1870
[22]   ZHU W, KIM J, CHENG C, et al. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro [J]. Bone, 2006, 39(1): 61-71. DOI:10.1016/j.bone.2005.12.018
doi: 10.1016/j.bone.2005.12.018
[23]   BALEMANS W, VAN HUL W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators[J]. Developmental Biology, 2002, 250(2): 231-250. DOI:10.1006/dbio.2002.0779
doi: 10.1006/dbio.2002.0779
[24]   HAVRANEK K E, WHITE L A, LANCHY J M, et al. Transcriptome profiling in Rift Valley fever virus infected cells reveals modified transcriptional and alternative splicing programs[J]. PLoS ONE, 2019, 14(5): e217497. DOI:10.1371/journal.pone.0217497
doi: 10.1371/journal.pone.0217497
[25]   WINE-LEE L, AHN K J, RICHARDSON R D, et al. Signaling through BMP type 1 receptors is required for development of interneuron cell types in the dorsal spinal cord[J]. Development, 2004, 131(21): 5393-5403. DOI:10.1242/dev.01379
doi: 10.1242/dev.01379
[26]   PANCHISION D M, PICKEL J M, STUDER L, et al. Sequential actions of BMP receptors control neural precursor cell production and fate[J]. Genes & Development, 2001, 15(16): 2094-2110. DOI:10.1101/gad.894701
doi: 10.1101/gad.894701
[27]   TIMMER J R, WANG C, NISWANDER L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors[J]. Development, 2002, 129(10): 2459-2472.
[28]   HAZEN V M, ANDREWS M G, UMANS L, et al. BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord[J]. Developmental Biology, 2012, 367(2): 216-227. DOI:10.1016/j.ydbio.2012.05.014
doi: 10.1016/j.ydbio.2012.05.014
[29]   MASSAGUE J, SEOANE J, WOTTON D. Smad transcription factors[J]. Genes & Development, 2005, 19(23): 2783-2810. DOI:10.1101/gad.1350705
doi: 10.1101/gad.1350705
[30]   HAZEN V M, PHAN K D, HUDIBURGH S, et al. Inhibitory Smads differentially regulate cell fate specification and axon dynamics in the dorsal spinal cord[J]. Developmental Biology, 2011, 356(2): 566-575. DOI:10.1016/j.ydbio.2011.06.017
doi: 10.1016/j.ydbio.2011.06.017
[31]   LIEM K J, Jr, JESSELL T M, BRISCOE J. Regulation of the neural patterning activity of Sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites[J]. Development, 2000, 127(22): 4855-4866.
[32]   LIEM JR K J, TREMML G, JESSELL T M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord[J]. Cell, 1997, 91(1): 127-138. DOI:10.1016/s0092-8674(01)80015-5
doi: 10.1016/s0092-8674(01)80015-5
[33]   ANDREWS M G, DEL CASTILLO L M, OCHOA-BOLTON E, et al. BMPs direct sensory interneuron identity in the developing spinal cord using signal-specific not morphogenic activities[J]. eLife, 2017, 6: e30647. DOI:10.7554/eLife.30647
doi: 10.7554/eLife.30647
[34]   LE DRÉAU G, GARCIA-CAMPMANY L, RABADÁN M A, et al. Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord[J]. Development, 2012, 139(2): 259-268. DOI:10.1242/dev.074948
doi: 10.1242/dev.074948
[35]   TOZER S, LE DRÉAU G, MARTI E, et al. Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube[J]. Development, 2013, 140(7): 1467-1474. DOI:10.1242/dev.090118
doi: 10.1242/dev.090118
[36]   RIMKUS T K, CARPENTER R L, QASEM S, et al. Targeting the Sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors[J]. Cancers, 2016, 8(2): 22. DOI:10.3390/cancers8020022
doi: 10.3390/cancers8020022
[37]   ROELINK H, PORTER J A, CHIANG C, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis[J]. Cell, 1995, 81(3): 445-455. DOI:10.1016/0092-8674(95)90397-6
doi: 10.1016/0092-8674(95)90397-6
[38]   PLACZEK M, BRISCOE J. The floor plate: multiple cells, multiple signals[J]. Nature Reviews Neuroscience, 2005, 6(3): 230-240. DOI:10.1038/nrn1628
doi: 10.1038/nrn1628
[39]   PORTER J A, EKKER S C, PARK W J, et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain[J]. Cell, 1996, 86(1): 21-34. DOI:‍10.1016/s0092-8674(00)80074-4
doi: ?10.1016/s0092-8674(00)80074-4
[40]   ZENG X, GOETZ J A, SUBER L M, et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling[J]. Nature, 2001, 411(6838): 716-720. DOI:10.1038/35079648
doi: 10.1038/35079648
[41]   CHEN M H, LI Y J, KAWAKAMI T, et al. Palmitoylation is required for the production of a soluble multimeric hedgehog protein complex and long-range signaling in vertebrates[J]. Genes & Development, 2004, 18(6): 641-659. DOI:‍10.1101/gad.1185804
doi: ?10.1101/gad.1185804
[42]   ZHANG X M, RAMALHO-SANTOS M, MCMAHON A P. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node[J]. Cell, 2001, 106(2): 781-792.
[43]   CASPARY T, GARCÍA-GARCÍA M J, HUANGFU D W, et al. Mouse dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling[J]. Current Biology, 2002, 12(18): 1628-1632. DOI:10.1016/s0960-9822(02)01147-8
doi: 10.1016/s0960-9822(02)01147-8
[44]   TIAN H, JEONG J H, HARFE B D, et al. Mouse Disp1 is required in Sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand[J]. Development, 2005, 132(1): 133-142. DOI:10.1242/dev.01563
doi: 10.1242/dev.01563
[45]   DANESIN C, AGIUS E, ESCALAS N, et al. Ventral neural progenitors switch toward an oligodendroglial fate in response to increased Sonic hedgehog (Shh) activity: involvement of sulfatase 1 in modulating Shh signaling in the ventral spinal cord[J]. Journal of Neuroscience, 2006, 26(19): 5037-5048. DOI:10.1523/JNEUROSCI.0715-06.2006
doi: 10.1523/JNEUROSCI.0715-06.2006
[46]   ZHANG W, KANG J S, COLE F, et al. Cdo functions at multiple points in the Sonic hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly[J]. Developmental Cell, 2006, 10(5): 657-665. DOI:10.1016/j.devcel.2006.04.005
doi: 10.1016/j.devcel.2006.04.005
[47]   ALLEN B L, TENZEN T, MCMAHON A P. The hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development[J]. Genes & Development, 2007, 21(10): 1244-1257. DOI:10.1101/gad.1543607
doi: 10.1101/gad.1543607
[48]   TENZEN T, ALLEN B L, COLE F, et al. The cell surface membrane proteins Cdo and Boc are components and targets of the hedgehog signaling pathway and feedback network in mice[J]. Developmental Cell, 2006, 10(5): 647-656. DOI:10.1016/j.devcel.2006.04.004
doi: 10.1016/j.devcel.2006.04.004
[49]   JEONG J H, MCMAHON A P. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1[J]. Development, 2005, 132(1): 143-154. DOI:10.1242/dev.01566
doi: 10.1242/dev.01566
[50]   ELDAR A, ROSIN D, SHILO B Z, et al. Self-enhanced ligand degradation underlies robustness of morphogen gradients[J]. Developmental Cell, 2003, 5(4): 635-646. DOI:10.1016/s1534-5807(03)00292-2
doi: 10.1016/s1534-5807(03)00292-2
[51]   HOLTZ A M, PETERSON K A, NISHI Y, et al. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning[J]. Development, 2013, 140(16): 3423-3434. DOI:10.1242/dev.095083
doi: 10.1242/dev.095083
[52]   JAKOBS P, SCHULZ P, ORTMANN C, et al. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells[J]. Scientific Reports, 2016, 6(1): 26435. DOI:10.1038/srep26435
doi: 10.1038/srep26435
[53]   BRISCOE J, THEROND P P. The mechanisms of hedgehog signalling and its roles in development and disease[J]. Nature Reviews Molecular Cell Biology, 2013, 14(7): 416-429. DOI:10.1038/nrm3598
doi: 10.1038/nrm3598
[54]   ROHATGI R, MILENKOVIC L, SCOTT M P. Patched1 regulates hedgehog signaling at the primary cilium[J]. Science, 2007, 317(5836): 372-376. DOI:10.1126/science.1139740
doi: 10.1126/science.1139740
[55]   JIA J H, TONG C, JIANG J. Smoothened transduces hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail[J]. Genes & Development, 2003, 17(21): 2709-2720. DOI:10.1101/gad.1136603
doi: 10.1101/gad.1136603
[56]   CHEN C H, VON KESSLER D P, PARK W, et al. Nuclear trafficking of cubitus interruptus in the transcriptional regulation of hedgehog target gene expression[J]. Cell, 1999, 98(3): 305-316. DOI:10.1016/s0092-8674(00)81960-1
doi: 10.1016/s0092-8674(00)81960-1
[57]   VARJOSALO M, LI S P, TAIPALE J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals[J]. Developmental Cell, 2006, 10(2): 177-186. DOI:10.1016/j.devcel.2005.12.014
doi: 10.1016/j.devcel.2005.12.014
[58]   TAY S Y, INGHAM P W, ROY S. A homologue of the Drosophila kinesin-like protein Costal2 regulates hedgehog signal transduction in the vertebrate embryo[J]. Development, 2005, 132(4): 625-634. DOI:10.1242/dev.01606
doi: 10.1242/dev.01606
[59]   MIMEAULT M, BATRA S K. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies[J]. Pharmacological Reviews, 2010, 62(3): 497-524. DOI:10.1124/pr.109.002329
doi: 10.1124/pr.109.002329
[60]   AZA-BLANC P, RAMIREZ-WEBER F A, LAGET M P, et al. Proteolysis that is inhibited by hedgehog targets cubitus interruptus protein to the nucleus and converts it to a repressor[J]. Cell, 1997, 89(7): 1043-1053. DOI:10.1016/s0092-8674(00)80292-5
doi: 10.1016/s0092-8674(00)80292-5
[61]   DING Q, MOTOYAMA J, GASCA S, et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice[J]. Development, 1998, 125(14): 2533-2543.
[62]   PERSSON M, STAMATAKI D, WELSCHER P TE, et al. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity[J]. Genes & Development, 2002, 16(22): 2865-2878. DOI:10.1101/gad.243402
doi: 10.1101/gad.243402
[63]   JACOB J, BRISCOE J. Gli proteins and the control of spinal-cord patterning[J]. EMBO Reports, 2003, 4(8): 761-765. DOI:10.1038/sj.embor.embor896
doi: 10.1038/sj.embor.embor896
[64]   STAMATAKI D, ULLOA F, TSONI S V, et al. A gradient of Gli activity mediates graded Sonic hedgehog signaling in the neural tube[J]. Genes & Development, 2005, 19(5): 626-641. DOI:10.1101/gad.325905
doi: 10.1101/gad.325905
[65]   DESSAUD E, MCMAHON A P, BRISCOE J. Pattern formation in the vertebrate neural tube: a Sonic hedgehog morphogen-regulated transcriptional network[J]. Development, 2008, 135(15): 2489-2503. DOI:10.1242/dev.009324
doi: 10.1242/dev.009324
[66]   MARIGO V, TABIN C J. Regulation of patched by Sonic hedgehog in the developing neural tube[J]. PNAS, 1996, 93(18): 9346-9351. DOI:‍‍10.1073/pnas.93.18.934 6
doi: ??10.1073/pnas.93.18.934
[67]   LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379. DOI:10.1038/nature12517
doi: 10.1038/nature12517
[68]   REYNOLDS B A, WEISS S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992, 255(5052): 1707-1710. DOI:10.1126/science.1553558
doi: 10.1126/science.1553558
[69]   EIRAKU M, WATANABE K, MATSUO-TAKASAKI M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5): 519-532. DOI:10.1016/j.stem.2008.09.002
doi: 10.1016/j.stem.2008.09.002
[70]   QIAN X Y, NGUYEN H N, SONG M M, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5): 1238-1254. DOI:10.1016/j.cell.2016.04.032
doi: 10.1016/j.cell.2016.04.032
[71]   SASAI Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture[J]. Cell Stem Cell, 2013, 12(5): 520-530. DOI:10.1016/j.stem.2013.04.009
doi: 10.1016/j.stem.2013.04.009
[72]   HABIB S J, CHEN B C, TSAI F C, et al. A localized Wnt signal orients asymmetric stem cell division in vitro [J]. Science, 2013, 339(6126): 1445-1448. DOI:10.1126/science.1231077
doi: 10.1126/science.1231077
[1] Jing CHEN,Hongyan HE,Changsheng LIU. Bioactive modification of microfluidic chip surface for detecting recombinant human bone morphogenetic protein-2[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 391-399.
[2] Zhao Haiping, Liu Zhen, Chen Guangxin, Li Chunyi. Exploration of organ morphogenesisⅠ: Bioelectricity and morphogenesis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 119-124.
[3] Zhao Haiping, Chu Wenhui, Chen Guangxin, Li Chunyi. Exploration of organ morphogenesisⅡ: Deer antler as unique mammalian model.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 125-132.