Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 426-433    DOI: 10.3785/j.issn.1008-9209.2021.08.311
Biological sciences & biotechnologies     
Inhibitory effects of knocking down homeobox C8 on seven factors-induced somatic cell reprogramming
Yi HUANG1,2(),Shicai FANG1,2,Bo WANG2,3,Jin MING2,Chen LI2,Duanqing PEI2,3()
1.Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
2.Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
3.Bio-land Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510530, China
Download: HTML   HTML (   PDF(2181KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the mechanism of seven factors (Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Esrrb-Sall4)-induced somatic cell reprogramming, we analyzed the related role of homeobox C8 (Hoxc8) in the process of pluripotency network reconstruction through forward and reverse genetics, quantitative analysis of the classic reprogramming process, and simultaneous knockdown of Hoxc8 and SMAD family member 6 (Smad6). The results showed that knockdown of Hoxc8 could significantly inhibit seven factors-induced somatic cell reprogramming, but overexpression of Hoxc8 had no effects. Furthermore, knockdown of Hoxc8 neither impeded the up-regulation of pluripotency marker genes and down-regulation of somatic cell marker genes nor impeded the expressions of mesenchymal-epithelial transition (MET) marker genes and cell proliferation marker genes. It was also found that simultaneous knockdown of Hoxc8 and Smad6 could rescue the inhibitory effects caused by knocking down Hoxc8 alone. In conclusion, these results suggest that Hoxc8 plays a pivotal role in somatic cell reprogramming, which provides a reference for further revealing the mechanism of Hoxc8 regulating cell fate transition.



Key wordssomatic cell reprogramming      induced pluripotent stem cells      homeobox C8      SMAD family member 6     
Received: 31 August 2021      Published: 03 September 2022
CLC:  Q 291  
Corresponding Authors: Duanqing PEI     E-mail: huang_yi@gibh.ac.cn;pei_duanqing@gibh.ac.cn
Cite this article:

Yi HUANG,Shicai FANG,Bo WANG,Jin MING,Chen LI,Duanqing PEI. Inhibitory effects of knocking down homeobox C8 on seven factors-induced somatic cell reprogramming. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 426-433.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.08.311     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/426


敲降同源异型盒C8对7因子诱导的体细胞重编程的抑制作用

为探究7因子(Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Esrrb-Sall4)诱导的体细胞重编程机制,通过正向与反向遗传学方法、定量分析重编程关键分子事件及同时敲降同源异型盒C8(homeobox C8, Hoxc8)和SMAD家族成员6(SMAD family member 6, Smad6)等方式解析Hoxc8在细胞多能性网络重建过程中的相关作用。结果表明:敲降Hoxc8可显著抑制7因子诱导的体细胞重编程,但过表达Hoxc8对其无影响。敲降Hoxc8既不影响重编程中多能性标记基因的上调与体细胞标记基因的下调,也不影响间质-上皮转化(mesenchymal-epithelial transition, MET)标记基因与细胞增殖标记基因的表达。同时敲降Hoxc8Smad6可使单独敲降Hoxc8导致的重编程效率降低情况得到恢复。综上所述,Hoxc8在7因子诱导的体细胞重编程中具有重要作用,为进一步揭示Hoxc8调控细胞命运转变的机制提供了参考。


关键词: 体细胞重编程,  诱导多能干细胞,  同源异型盒C8,  SMAD家族成员6 
Fig. 1 Results of knocking down Hoxc8
Fig. 2 Results of overexpressing Hoxc8A. Images for Oct4-GFP+ generated by overexpressing Hoxc8 and DsRed, respectively after 7 d; B. Numbers of Oct4-GFP+ from Fig. A (compared with the DsRed control, the symbol ns indicates no significant differences at the 0.05 probability level, n=3).
Fig. 3 Gene expression results detected by qRT-PCRA. Effects of knocking down Hoxc8 on the expression of pluripotency marker genes; B. Effects of knocking down Hoxc8 on the expression of mesenchymal-epithelial transition marker genes (Snai1, Twist2 and Cdh2 are mesenchymal cell marker genes, and Cdh1, Cldn3 and Epcam are epithelial cell marker genes); C. Effects of knocking down Hoxc8 on the expression of somatic cell marker genes; D. Effects of knocking down Hoxc8 on the expression of cell proliferation marker genes. shHoxc8 610+698 indicates the simultaneous knockdown of two shRNAs in seven factors’ reprogramming. n=3.
Fig. 4 Results of simultaneous knockdown of Smad6 and Hoxc8A. Knockdown efficiency of shRNA [compared with the shLuciferase control, quadruple asterisks (****) indicate extremely highly significant differences at the 0.000 1 probability level, n=3]; B. Numbers of Oct4-GFP+ when knocking down Smad6 (compared with the shLuciferase control, the symbol ns indicates no significant differences at the 0.05 probability level, n=3); C. Numbers of Oct4-GFP+ after 7 d of simultaneous knockdown of shHoxc8 and shSmad6 (compared with the shLuciferase control, the symbol ns indicates no significant differences at the 0.05 probability level, n=3); D. Results of Dual-Luciferase Reporter Assay System [compared with the pGL3-basic control, double asterisks (**) indicate highly significant differences at the 0.01 probability level, n=3].
[1]   TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. DOI:10.1016/j.cell.2006.07.024
doi: 10.1016/j.cell.2006.07.024
[2]   BUGANIM Y, MARKOULAKI S, VAN WIETMARSCHEN N, et al. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection[J]. Cell Stem Cell, 2014, 15(3): 295-309. DOI:10.1016/j.stem.2014.07.003
doi: 10.1016/j.stem.2014.07.003
[3]   HOU P P, LI Y Q, ZHANG X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341(6146): 651-654. DOI:10.1126/science.1239278
doi: 10.1126/science.1239278
[4]   CHEN J K, LIU J, CHEN Y, et al. Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics[J]. Cell Research, 2011, 21(6): 884-894. DOI:10.1038/cr.2011.51
doi: 10.1038/cr.2011.51
[5]   WANG B, WU L L, LI D W, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Esrrb-Sall4 [J]. Cell Reports, 2019, 27(12): 3473-3485. DOI:10.1016/j.celrep.2019.05.068
doi: 10.1016/j.celrep.2019.05.068
[6]   AKIYAMA R, KAWAKAMI H, WONG J, et al. Sall4-Gli3 system in early limb progenitors is essential for the development of limb skeletal elements[J]. PNAS, 2015, 112(16): 5075-5080. DOI:10.1073/pnas.1421949112
doi: 10.1073/pnas.1421949112
[7]   DUBOULE D. The rise and fall of Hox gene clusters[J]. Development, 2007, 134(14): 2549-2560. DOI:10.1242/dev.001065
doi: 10.1242/dev.001065
[8]   FAVIER B, DOLLÉ P. Developmental functions of mammalian Hox genes[J]. Molecular Human Reproduction, 1997, 3(2): 115-131. DOI:10.1093/molehr/3.2.115
doi: 10.1093/molehr/3.2.115
[9]   COUGHLAN E, GARSIDE V C, WONG S F L, et al. A Hox code defines spinocerebellar neuron subtype regionalization[J]. Cell Reports, 2019, 29(8): 2408-2421. DOI:10.1016/j.celrep.2019.10.048
doi: 10.1016/j.celrep.2019.10.048
[10]   PAÇO A, DE BESSA GARCIA S A, FREITAS R. Methylation in Hox clusters and its applications in cancer therapy[J]. Cells, 2020, 9(7): 1613. DOI:10.3390/cells9071613
doi: 10.3390/cells9071613
[11]   BHATLEKAR S, FIELDS J Z, BOMAN B M. Hox genes and their role in the development of human cancers[J]. Journal of Molecular Medicine, 2014, 92(8): 811-823. DOI:10.1007/s00109-014-1181-y
doi: 10.1007/s00109-014-1181-y
[12]   HUANG Y X, CHEN L H, GUO A Q. Upregulated expression of HOXC8 is associated with poor prognosis of cervical cancer[J]. Oncology Letters, 2018, 15(5): 7291-7296. DOI:10.3892/ol.2018.8200
doi: 10.3892/ol.2018.8200
[13]   LIU H L, ZHANG M S, XU S S, et al. HOXC8 promotes proliferation and migration through transcriptional up-regulation of TGFβ1 in non-small cell lung cancer[J]. Oncogenesis, 2018, 7(2): 1. DOI:10.1038/s41389-017-0016-4
doi: 10.1038/s41389-017-0016-4
[14]   SHAH M, CARDENAS R, WANG B, et al. HOXC8 regulates self-renewal, differentiation and transformation of breast cancer stem cells[J]. Molecular Cancer, 2017, 16(1): 38. DOI:10.1186/s12943-017-0605-z
doi: 10.1186/s12943-017-0605-z
[15]   JIANG Y, WANG Z L, YING C T, et al. FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs[J]. Oncogene, 2021, 40(24): 4094-4110. DOI:10.1038/s41388-021-01833-2
doi: 10.1038/s41388-021-01833-2
[16]   GONG C, ZOU J, ZHANG M S, et al. Upregulation of MGP by HOXC8 promotes the proliferation, migration, and EMT processes of triple-negative breast cancer[J]. Molecular Carcinogenesis, 2019, 58(10): 1863-1875. DOI:10.1002/mc.23079
doi: 10.1002/mc.23079
[17]   LIANG T Y, WANG X X, LI P L, et al. HOXC8: a predictive glioma biomarker that induces epithelia-mesenchymal transition[J]. Chinese Neurosurgical Journal, 2018, 4:24. DOI:10.1186/s41016-018-0132-9
doi: 10.1186/s41016-018-0132-9
[18]   LEI H Y, JUAN A H, KIM M S, et al. Identification of a Hoxc8-regulated transcriptional network in mouse embryo fibroblast cells[J]. PNAS, 2006, 103(27): 10305-10309. DOI:10.1073/pnas.0603552103
doi: 10.1073/pnas.0603552103
[19]   KANG M, BOK J, DEOCARIS C C, et al. Hoxc8 represses BMP-induced expression of Smad6 [J]. Molecules and Cells, 2010, 29(1): 29-33. DOI:10.1007/s10059-010-0007-1
doi: 10.1007/s10059-010-0007-1
[20]   DE BESSA GARCIA S A, ARAÚJO M, PEREIRA T, et al. Hox genes function in breast cancer development[J]. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 2020, 1873(2): 188358. DOI:10.1016/j.bbcan.2020.188358
doi: 10.1016/j.bbcan.2020.188358
[21]   IDAIKKADAR P, MORGAN R, MICHAEL A. Hox genes in high grade ovarian cancer[J]. Cancers, 2019, 11(8): 1107. DOI:10.3390/cancers11081107
doi: 10.3390/cancers11081107
[22]   GUO S Q, ZI X Y, SCHULZ V P, et al. Nonstochastic reprogramming from a privileged somatic cell state[J]. Cell, 2014, 156(4): 649-662. DOI:10.1016/j.cell.2014.01.020
doi: 10.1016/j.cell.2014.01.020
[23]   ROCCIO M, SCHMITTER D, KNOBLOCH M, et al. Predicting stem cell fate changes by differential cell cycle progression patterns[J]. Development, 2013, 140(2): 459-470. DOI:10.1242/dev.086215
doi: 10.1242/dev.086215
[24]   YANG H Q, LIANG Y C, CAO Y Y, et al. Homeobox C8 inhibited the osteo-/dentinogenic differentiation and migration ability of stem cells of the apical papilla via activating KDM1A[J]. Journal of Cellular Physiology, 2020, 235(11): 8432-8445. DOI:10.1002/jcp.29687
doi: 10.1002/jcp.29687
[25]   YAN H J, ZHOU S Y, LI Y, et al. The effects of LSD1 inhibition on self-renewal and differentiation of human induced pluripotent stem cells[J]. Experimental Cell Research, 2016, 340(2): 227-237. DOI:10.1016/j.yexcr.2015.12.015
doi: 10.1016/j.yexcr.2015.12.015
[26]   SUN H, YANG X, LIANG L N, et al. Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency[J]. The EMBO Journal, 2020, 39(8): e102961. DOI:10.15252/embj.2019102961
doi: 10.15252/embj.2019102961
No related articles found!