Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (6): 743-756    DOI: 10.3785/j.issn.1008-9209.2021.05.111
Research articles     
Nutritional evaluation and flavor characteristic analysis of different parts of Clitocybe maxima
Jiaxin DU(),Jiapei XI,Donglu FANG,Hailan SUN,Qiuhui HU,Liyan ZHAO()
Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture and Rural Affairs, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Download: HTML   HTML (   PDF(6961KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Clitocybe maxima is a rare and high-temperature edible fungus with a unique flavor. In this experiment, the edible value of the pileus, stipe and mycorrhiza of the fresh C. maxima was explored and evaluated through the detections of basic nutrients and mineral contents. The taste and odor differences of different parts of C. maxima were evaluated by electronic tongue, electronic nose and gas chromatography-ion mobility spectroscopy (GC-IMS), aiming to provide a theoretical basis for flavor research of C. maxima. The results showed that the moisture, fat and protein contents were higher in the pileus and the content of total sugar in the stipe was the highest. The amino acid compositions in the pileus were in line with the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) ideal protein standard, and methionine only existed in the pileus. At the same time, the C. maxima was rich in sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), ferrum (Fe), zinc (Zn) and so on, and the element contents in different parts were different. The results of electronic tongue detection showed that the contents of bitter components in all parts of C. maxima were high. By using linear discriminant analysis (LDA) to reduce the dimensions of the electronic nose analysis results, it was found that the odor characteristics in different parts of C. maxima could be clearly distinguished. Among the 84 volatile flavor substances detected by GC-IMS, alcohols, aldehydes and ketones had significant effects on the flavor profiles of different parts of C. maxima. The contents of 1-octene-3-ol (monomer and dimer), 1,3-octadiene (dimer) and 3-methylthiopropanal (monomer and dimer) were important volatile substances that produced different flavor profiles in different parts of C. maxima, and the monomer and dimer of 3-methylthiopropanal were the characteristic flavor compounds in pileus.



Key wordsClitocybe maxima      nutrition and flavor      gas chromatography-ion mobility spectroscopy (GC-IMS)      linear discriminant analysis (LDA)      electronic nose      electronic tongue     
Received: 11 May 2021      Published: 25 December 2021
CLC:  S 646.9  
Corresponding Authors: Liyan ZHAO     E-mail: 2021108070@stu.njau.edu.cn;zhlychen@njau.edu.cn
Cite this article:

Jiaxin DU,Jiapei XI,Donglu FANG,Hailan SUN,Qiuhui HU,Liyan ZHAO. Nutritional evaluation and flavor characteristic analysis of different parts of Clitocybe maxima. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 743-756.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.05.111     OR     http://www.zjujournals.com/agr/Y2021/V47/I6/743


猪肚菌不同部位的营养评价及风味特征分析

猪肚菌(Clitocybe maxima)是一种风味独特的珍贵高温食用菌。本实验以新鲜猪肚菌为原料,通过对基本营养成分及矿物质含量的检测,探究并评价猪肚菌的菌伞、菌柄和菌根部位的食用价值。基于电子舌、电子鼻和气相色谱-离子迁移谱(gas chromatography-ion mobility spectroscopy, GC-IMS)评价猪肚菌不同部位的滋味和气味差异,为猪肚菌风味研究提供实验与理论支撑。结果表明:猪肚菌菌伞的水分、脂肪、蛋白质含量较高,菌柄总糖含量最多,菌伞的氨基酸组成最符合联合国粮农组织/世界卫生组织规定的理想蛋白标准,且蛋氨酸仅存在于菌伞中;同时,猪肚菌中富含钠(Na)、钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锌(Zn)等元素,且不同部位的元素含量不同。电子舌结果显示猪肚菌各部位的苦味成分含量均较高。通过线性判别分析(linear discriminant analysis, LDA)对电子鼻分析的结果进行降维处理后发现,猪肚菌不同部位的气味特征可以被清晰地区分。通过GC-IMS检出的84种挥发性风味物质中,醇类、醛类和酮类化合物对猪肚菌不同部位的风味轮廓有较明显的影响,其中1-辛烯-3-醇(单体、二聚体)、1,3-辛二烯(二聚体)、3-甲硫基丙醛(单体、二聚体)是导致猪肚菌不同部位风味轮廓产生差异的重要挥发性物质,3-甲硫基丙醛的单体和二聚体是菌伞的特征风味化合物。


关键词: 猪肚菌,  营养与风味,  气相色谱-离子迁移谱,  线性判别分析,  电子鼻,  电子舌 

步骤

Step

控制温度

Controlling

temperature/℃

升温时间

Heating

time/min

恒温时间

Soaking

time/min

112055
2150510
3180520
Table 1 Operating steps of the microwave digester

参量

Parameter

参数设置

Parameter setting

射频功率 Radio frequency power1550 W
等离子体气流量 Plasma flow15.0 L/min
载气流量 Carrier air flow1.0 L/min
辅助气流量 Auxiliary air flow0.40 L/min
氦气流量 Helium flow5 mL/min

雾化室温度

Atomizing temperature

2 ℃

样品提升速率

Sample raising rate

0.1 r/s
雾化器 Atomizer

高盐/同心雾化器

High salt/concentric atomizer

采样锥/截取锥

Sampling cone/cut-off cone

镍/铂锥

Nickel/platinum cone

采样深度 Sampling depth8 mm
采集模式 Acquisition mode跳峰 Spectrum
检测方式 Detection mode自动 Automatic

每峰测定点数

Determination point per peak

3
重复次数 Number of repetitions3
Table 2 Operating conditions of ICP-MS

传感器编号

Sensor

number

传感器名称

Sensor name

敏感物质

Sensitive material

S1W1C芳烃化合物 Aromatic hydrocarbon
S2W5S氮氧化物 Nitrogen oxide
S3W3C

氨、芳香分子

Ammonia, aromatic molecules

S4W6S氰化物 Cyanide
S5W5C

烯烃、芳香族、极性分子

Alkenes, aromatic compounds,

polar molecules

S6W1S烷类 Alkanes
S7W1W硫化物 Sulfides
S8W2S

醇、部分芳香族化合物

Alcohol, some aromatic compounds

S9W2W

芳烃化合物、硫的有机化合物

Aromatic hydrocarbon, organic

compounds of sulfur

S10W3S

烷类和脂肪族

Alkanes and aliphatics

Table 3 Performance descriptions of PEN3 electronic nose sensor

营养成分

Nutrient

composition

菌伞

Pileus

菌柄

Stipe

菌根

Mycorrhiza

水分 Moisture91.35±0.03a91.05±0.01a84.18±0.07b
灰分 Ash4.12±0.26a4.55±0.18a4.67±0.01a
粗脂肪 Crude fat5.03±0.51a2.84±0.47b4.62±0.67a
总糖 Total sugar40.81±1.72b50.84±1.62a44.66±1.30ab
蛋白质 Protein26.69±0.62a19.60±0.62b17.47±0.63c
Table 4 Nutrient compositions in different parts of fresh C. maxima

元素

Element

菌伞

Pileus

菌柄

Stipe

菌根

Mycorrhiza

Na1 608.35±363.07ab1 991.85±176.86a176.86±606.99b
K33 878.60±62.23a28 687.40±31.40b34 230.15±345.00a
Ca58.06±6.99c644.15±10.82a221.45±40.09b
Mg290.34±43.32a260.19±34.85ab214.42±24.41b
Zn68.85±0.21a49.35±0.07b47.00±0.14c
Fe101.27±44.49b25.86±26.57c167.26±144.28a
Cu0.37±0.04a0.41±0.06a0.39±0.07a
Se0.63±0.05a0.40±0.04b0.43±0.03b
Sn0.68±0.00a0.75±0.07a0.45±0.01b
Cd0.16±0.01a0.14±0.02a0.11±0.00a
Pb2.07±0.10b3.10±0.99a2.40±0.57a
Cr1.42±0.04b2.01±0.47a1.62±0.06b
Hg0.09±0.01a0.09±0.02a0.09±0.09a
Table 5 Contents of mineral elements in different parts of fresh C. maxima

氨基酸

Amino acid

菌伞

Pileus

菌柄

Stipe

菌根

Mycorrhiza

苏氨酸 Thr*20.01±0.55a9.59±0.21b5.48±0.08c
赖氨酸 Lys*23.58±0.76a11.67±0.29b6.22±0.10c
缬氨酸 Val*22.10±0.60a10.13±0.21b5.74±0.10c
组氨酸 His*10.04±0.28a5.01±0.14b2.80±0.05c
苯丙氨酸 Phe*15.86±0.48a8.49±0.16b4.40±0.10c
异亮氨酸 Ile*16.92±0.42a8.32±0.17b4.57±0.09c
亮氨酸 Leu*26.30±0.85a13.70±0.33b7.01±0.18c
蛋氨酸 Met*30.53±1.28NDND
天冬氨酸 Asp37.73±1.12a18.01±0.39b10.14±0.16c
丝氨酸 Ser20.27±0.58a9.56±0.19b5.58±0.02c
谷氨酸 Glu50.46±1.53a22.91±0.53b11.49±0.15c
甘氨酸 Gly18.93±0.55a9.06±0.21b5.16±0.08c
丙氨酸 Ala30.70±0.81a14.80±0.41b8.65±0.16c
半胱氨酸 Cys3.86±0.02a1.65±0.06b1.02±0.02c
酪氨酸 Tyr12.45±0.28a6.32±0.19b3.34±0.04c
精氨酸 Arg18.89±0.64a9.65±0.21b4.83±0.09c
总氨基酸 Total amino acid (TAA)358.64±10.73a156.26±3.69b86.41±1.46c
必需氨基酸 Essential amino acid (EAA)165.34±5.23a65.85±1.51b36.22±0.69c
非必需氨基酸 Non-essential amino acid (NEAA)193.30±5.50a90.41±2.18b50.19±0.77c
EAA/NEAA0.86±0.27a0.73±0.09b0.72±0.24b
EAA/TAA0.46±0.08a0.42±0.03b0.42±0.09b
Table 6 Analysis results of acid hydrolyzed amino acids in different parts of C. maxima (by dry mass)

氨基酸

Amino acid

菌伞

Pileus

菌柄

Stipe

菌根

Mycorrhiza

FAO/WHO模式

FAO/WHO mode

苏氨酸 Thr5.58±0.01c6.04±0.01b6.34±0.02a4.00
缬氨酸 Val6.16±0.02c6.38±0.01b6.64±0.00a5.00
异亮氨酸 Ile4.72±0.02b5.23±0.02a5.29±0.02a4.00
亮氨酸 Leu7.33±0.02c8.63±0.01a8.11±0.07b7.00
赖氨酸 Lys6.57±0.01c7.35±0.01a7.20±0.00b5.50
苯丙氨酸+酪氨酸 Phe+Tyr7.89±0.02c9.32±0.01a8.95±0.01b6.00
半胱氨酸+蛋氨酸Cys+Met9.59±0.06a1.04±0.01c1.18±0.00b3.50
Table 7 Compositions of essential amino acids in different parts of fresh C. maxima
Fig. 1 Radar diagram of electronic nose response values of pileus, stipe and mycorrhiza in fresh C. maxima
Fig. 2 Analysis of the overall flavors of pileus, stipe and mycorrhiza in C. maxima based on the electronic noseA. Principal component analysis; B. Linear discriminant analysis.
Fig. 3 Analysis of the overall taste profiles of pileus, stipe and mycorrhiza in fresh C. maxima based on the electronic tongue
Fig. 4 Analysis of flavor amino acid contents of pileus, stipe and mycorrhiza in fresh C. maximaDifferent lowercase letters above the bars indicate significant differences among different flavor amino acids in the same part at the 0.05 probability level; and different uppercase letters above the bars indicate significant differences at the same amino acid in the different parts at the 0.05 probability level.
Fig. 5 GC-IMS two-dimensional spectrograms of characteristic flavor of pileus, stipe and mycorrhiza in fresh C. maximaA. Original spectrogram; B. Difference contrast spectrogram.
Fig. 6 Fingerprints of volatile substances in different parts of C. maxima samples based on GC-IMSA-F represent alcohols, aldehydes, ketones, olefins, esters and other compounds, respectively. D: Dimer; M: Monomer.
Fig. 7 Distributions of volatile substances in different parts of C. maxima samples based on GC-IMSDifferent lowercase letters above the bars indicate significant differences at the same compound in different parts at the 0.05 probability level; and different uppercase letters above the bars indicate significant differences among different compounds in the same part at the 0.05 probability level.
[1]   曾金凤.大杯伞生物学特性研究.食用菌学报,1996,3(1):13-20.
ZENG J F. Studies on the biological characteristics of Clitocybe maxima Quel. Acta Edulis Fungi, 1996,3(1):13-20. (in Chinese with English abstract)
[2]   董洪新,蔡德华,李玉.猪肚菇的研究现状及展望.中国食用菌,2010,29(3):3-6. DOI:10.13629/j.cnki.53-1054.2010.03.016
DONG H X, CAI D H, LI Y. Research situation and prospect of Panus giganteus. Edible Fungi of China, 2010,29(3):3-6. (in Chinese with English abstract)
doi: 10.13629/j.cnki.53-1054.2010.03.016
[3]   彭智华,龚敏方.大杯蕈的营养价值及生物学特性研究.浙江农业学报,1994(3):29-34. DOI:10.1088/1674-1056/ac447f
PENG Z H, GONG M F. Study on nutritional value and biological characteristics of Clitocybe maxima. Acta Agricul-turae Zhejiangensis, 1994(3):29-34. (in Chinese with English abstract)
doi: 10.1088/1674-1056/ac447f
[4]   崔文浩,周爱珠,黄钢,等.大杯蕈秋冬季设施栽培技术.现代农业科技,2018(20):89. DOI:10.3969/j.issn.1007-5739.2018.20.055
CUI W H, ZHOU A Z, HUANG G, et al. Autumn and winter facility cultivation technologies of Clitocybe maxima. Modern Agricultural Science and Technology, 2018(20):89. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2018.20.055
[5]   唐青,郁建平.猪肚菇水溶性多糖提取工艺的研究.食品科学,2008,29(2):180-183. DOI:10.3321/j.issn:1002-6630.2008.02.033
TANG Q, YU J P. Study on extraction technology of water soluble polysaccharides from Clitocybe maxima. Food Science, 2008,29(2):180-183. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6630.2008.02.033
[6]   胡国元,郑森,汪红富,等.巨大革耳子实体多糖提取工艺研究.化学与生物工程,2008,25(6):60-62. DOI:10.3969/j.issn.1672-5425.2008.06.017
HU G Y, ZHENG S, WANG H F, et al. Study on extraction technology of fruiting body polysaccharide of Panus giganteus. Chemistry & Bioengineering, 2008,25(6):60-62. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-5425.2008.06.017
[7]   何欧伶,程艳薇,艾强,等.猪肚菇柄脆片休闲食品开发展望.农村经济与科技,2020,31(2):234-235. DOI:10.3969/j.issn.1007-7103.2020.02.136
HE O L, CHENG Y W, AI Q, et al. Prospects of development of snack food with crispy pork belly mushroom handle. Rural Economy and Science-Technology, 2020,31(2):234-235. (in Chinese)
doi: 10.3969/j.issn.1007-7103.2020.02.136
[8]   ZHANG Y R, WANG D W, CHEN Y T, et al. Healthy function and high valued utilization of edible fungi. Food Science and Human Wellness, 2021,10(4):408-420. DOI:10.1016/J.FSHW.2021.04.003
doi: 10
[9]   郑若男,邱东凤,陈梁军.金针菇生产副产品功能性成分提取研究进展.广东化工,2019,46(16):115-116. DOI:10.3969/j.issn.1007-1865.2019.16.050
ZHENG R N, QIU D F, CHEN L J. Research advances in extracting methods of functional components of the process product of Flammulina velutipes. Guangdong Chemical Industry, 2019,46(16):115-116. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-1865.2019.16.050
[10]   林忠宁,陈敏健,刘明香,等.真姬菇菇脚和菌糠氨基酸含量测定及营养评价.中国食用菌,2012,31(2):44-46. DOI:10.13629/j.cnki.53-1054.2012.02.020
LIN Z N, CHEN M J, LIU M X, et al. Determination of the contents of amino acids and nutritional evaluation of Hypsizygus marmoreus stembase and mushroom barn. Edible Fungi of China, 2012,31(2):44-46. (in Chinese with English abstract)
doi: 10.13629/j.cnki.53-1054.2012.02.020
[11]   赵静,丁奇,孙颖,等.香菇菌汤及酶解液中滋味成分及呈味特性的对比分析.食品科学,2016,37(24):99-104. DOI:10.7506/spkx1002-6630-201624015
ZHAO J, DING Q, SUN Y, et al. Comparison of taste compounds and taste characteristics of shiitake mushroom soup and enzymatic hydrolysate. Food Science, 2016,37(24):99-104. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201624015
[12]   YAO Y Z, PAN S Y, FAN G, et al. Evaluation of volatile profile of Sichuan dongcai, a traditional salted vegetable, by SPME-GC-MS and E-nose. LWT-Food Science and Tech-nology, 2015,64:528-535. DOI:10.1016/j.lwt.2015.06.063
doi: 10.1016/j.lwt.2015.06.063
[13]   徐永霞,白旭婷,冯媛,等.基于GC-IMS和化学计量学分析海鲈鱼肉蒸制过程中风味物质的变化.食品科学,2021,42(22):270-275. DOI:10.7506/spkx1002-6630-20201219-221
XU Y X, BAI X T, FENG Y, et al. Changes of flavor compounds in sea bass during steaming process as analyzed by gas chromatography-ion mobility spectroscopy and chemo-metrics. Food Science, 2021,42(22):270-275. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20201219-221
[14]   刘常园,方东路,汤静,等.基于电子鼻和GC-IMS分析复热对香菇汤挥发性风味物质的影响.食品科学技术学报,2020,38(4):46-53. DOI:10.3969/j.issn.2095-6002.2020.04.006
LIU C Y, FANG D L, TANG J, et al. Based on electronic nose and GC-IMS to study effect of reheating on volatile flavor substances of Lentinus edodes soups. Journal of Food Science and Technology, 2020,38(4):46-53. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-6002.2020.04.006
[15]   向莹,陈健,金鑫.金针菇菌盖与菌柄的营养评价.食品工业科技,2012,33(10):349-352. DOI:10.13386/j.issn1002-0306.2012.10.022
XIANG Y, CHEN J, JIN X. Nutritional evaluation of flammulina cap and stipe. Science and Technology of Food Industry, 2012,33(10):349-352. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2012.10.022
[16]   DOWLATI M, SOBHI H R, ESRAFILI A, et al. Heavy metals content in edible mushrooms: a systematic review, meta-analysis and health risk assessment. Trends in Food Science & Technology, 2021,109:527-535. DOI:10.1016/J.TIFS.2021.01.064
doi: 10.1016/J.TIFS.2021.01.064
[17]   刘仙金.食用菌中矿物质元素含量的测定.食药用菌,2018,26(5):306-309.
LIU X J. Detection of mineral elements in mushroom. Edible and Medicinal Mushrooms, 2018,26(5):306-309. (in Chinese)
[18]   中华人民共和国农业部.食品安全国家标准 食品中污染物限量:GB 2762—2017.北京:中国标准出版社,2017. DOI:10.25167/soe/17/2017
Ministry of Agriculture of the People’s Republic of China. Limits of Contaminants in Food: GB 27622017. Beijing: Standards Press of China, 2017. (in Chinese)
doi: 10.25167/soe/17/2017
[19]   樊祥,韩丽,张润何,等.微波消解-电感耦合等离子体质谱法测定乳制品中铬、钼和硒.分析科学学报,2015,31(3):409-412. DOI:10.13526/j.issn.1006-6144.2015.03.024
FAN X, HAN L, ZHANG R H, et al. Determination of Cr, Mo and Se in dairy products with microwave assisted sample digestion-inductively coupled plasma mass spec-trometry. Journal of Analytical Science, 2015,31(3):409-412. (in Chinese with English abstract)
doi: 10.13526/j.issn.1006-6144.2015.03.024
[20]   李冰茹,杜远芳,王北洪,等.食品中总铬和铬形态分析的前处理技术概述.食品安全质量检测学报,2018,9(9):2056-2062. DOI:10.3969/j.issn.2095-0381.2018.09.013
LI B R, DU Y F, WANG B H, et al. Research progress on the pretreatment techniques in the analysis of total chromium and speciation chromium in food. Journal of Food Safety and Quality Testing, 2018,9(9):2056-2062. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-0381.2018.09.013
[21]   马长中,徐锦华,张景荣,等.林芝橙黄疣柄牛肝菌营养成分分析与评价.食品与发酵工业,2018,44(5):259-264. DOI:10.13995/j.cnki.11-1802/ts.015526
MA C Z, XU J H, ZHANG J R, et al. Analysis and evaluation of nutritional components of wild Leccinum aurantiacum (Bull. et-Pers.) Gray from Linzhi. Food and Fermentation Industries, 2018,44(5):259-264. (in Chinese with English abstract)
doi: 10.13995/j.cnki.11-1802/ts.015526
[22]   罗晓莉,张沙沙,曹晶晶,等.云南3种胶质食用菌营养成分分析与蛋白质营养价值评价.食品工业科技,2021,42(14):328-333. DOI:10.13386/j.issn1002-0306.2020090143
LUO X L, ZHANG S S, CAO J J, et al. Analysis of nutritional components and evaluation of protein nutritional value of three kinds of gelatinous edible fungi in Yunnan. Science and Technology of Food Industry, 2021,42(14):328-333. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2020090143
[23]   姜萍萍,韩烨,顾赛红,等.五种食用菌氨基酸含量的测定及营养评价.氨基酸和生物资源,2009,31(2):67-71. DOI:10.3969/j.issn.1006-8376.2009.02.018
JIANG P P, HAN Y, GU S H, et al. Determination of amino acids in five edible fungi and their nutritional evaluation. Amino Acids & Biotic Resources, 2009,31(2):67-71. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8376.2009.02.018
[24]   康翠翠,施文正,方林,等.不同冻结方式对草鱼肉挥发性成分的影响.食品科学,2018,39(14):229-235. DOI:10.7506/spkx1002-6630-201814034
KANG C C, SHI W Z, FANG L, et al. Effects of different freezing methods on the volatile components of grass carp meat. Food Science, 2018,39(14):229-235. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201814034
[25]   赵洪雷,冯媛,徐永霞,等.海鲈鱼肉蒸制过程中品质及风味特性的变化.食品科学,2021,42(20):145-151. DOI:10.7506/spkx1002-6630-20200809-116
ZHAO H L, FENG Y, XU Y X, et al. Changes in quality and flavor characteristics of sea bass during steaming. Food Science, 2021,42(20):145-151. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20200809-116
[26]   李雪影,陆宁,张晶,等.薇菜干氨基酸组成分析与营养价值评价.食品与机械,2015,31(6):28-32. DOI:10.13652/j.issn.1003-5788.2015.06.006
LI X Y, LU N, ZHANG J, et al. Analysis of amino acids composition and nutritional value evaluation of dried osmund. Food & Machinery, 2015,31(6):28-32. (in Chinese with English abstract)
doi: 10.13652/j.issn.1003-5788.2015.06.006
[27]   王鹤潼,潘泓杉,王朝,等.不同品种金针菇特征挥发性物质的差异分析.食品科学,2021,42(2):193-199. DOI:10.7506/spkx1002-6630-20200804-054
WANG H T, PAN H S, WANG C, et al. Differences in characteristic volatile substances in different cultivars of Flammulina filiformis. Food Science, 2021,42(2):193-199. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20200804-054
[28]   TASAKI Y, KOBAYASHI D, SATO R, et al. Variations in 1-octen-3-ol and lipoxygenase gene expression in the oyster mushroom Pleurotus ostreatus according to fruiting body development,tissue specificity,maturity,and postharvest storage. Mycoscience, 2019,60(3):170-176. DOI:10.1016/j.myc.2019.02.005
doi: 10.1016/j.myc.2019.02.005
[29]   PAN D D, WU Z, PENG T, et al. Volatile organic compounds profile during milk fermentation by Lacto-bacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism. Journal of Dairy Science, 2014,97(2):624-631. DOI:10.3168/jds.2013-7131
doi: 10.3168/jds.2013-7131
[30]   SUN W Z, ZHAO Q Z, ZHAO H F, et al. Volatile compounds of Cantonese sausage released at different stages of processing and storage. Food Chemistry, 2010,121(2):319-325. DOI:10.1016/j.foodchem.2009.12.031
doi: 10.1016/j.foodchem.2009.12.031
[31]   张莹.几种食用菌风味物质的研究.合肥:安徽农业大学,2012:3-4. DOI:10.52547/ijrr.19.4.22
ZHANG Y. Study on flavor compounds of edible fungi in China. Hefei: Anhui Agricultural University, 2012:3-4. (in Chinese with English abstract)
doi: 10.52547/ijrr.19.4.22
[32]   IGLESIAS J, MEDINA I, BIANCHI F, et al. Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography-mass spectrometry. Food Chemistry, 2009,115(4):1473-1478. DOI:10.1016/j.foodchem.2009.01.076
doi: 10.1016/j.foodchem.2009.01.076
[33]   史冠莹,赵丽丽,王晓敏,等.红油香椿生长期主要活性物质及挥发性成分动态变化规律.食品科学,2021. . DOI:10.1016/j.lwt.2021.111512
SHI G Y, ZHAO L L, WANG X M, et al. Dynamic variation of main active substances and volatile components in Toona sinensis during growth period. Food Science, 2021. (in Chinese with English abstract)
doi: 10.1016/j.lwt.2021.111512
[34]   TSAI S Y, HUANG S J, LO S H, et al. Flavour components and antioxidant properties of several cultivated mushrooms. Food Chemistry, 2009,113(2):578-584. DOI:10.1016/j.food
chem.2008.08.034
doi: 10.1016/j.food
[1] HU Ying, WANG Jun*. Development of wireless electronic nose and using of remote monitoring[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 582-590.
[2] GAO Li-ping, WANG Jun*, CUI Shao-qing. Evaluation of fresh juice of strawberries at different degrees of ripeness using electronic nose and electronic tongue[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 715-724.
[3] HU Gui‐xian, WANG Jun, WANG Jian‐jun, WANG Xiao‐li. Detection for rice odors and identification of varieties based on electronic nose technique[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 670-676.
[4] HONG Xue-zhen,WANG Jun,ZHOU Bo,WANG Yong- wei. Discrimination of different storage time of the pork by electronic nose[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(5): 568-572.