Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 351-358    DOI: 10.3785/j.issn.1008-9209.2021.04.211
Resource utilization & environmental protection     
Study on the degradation of hexachlorobenzene in contaminated soil by fluidized-bed non-thermal plasma
Xuan TU(),Shuo ZHANG,Zhen LIU(),Keping YAN
Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML   HTML (   PDF(2069KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the degradation of hexachlorobenzene (HCB) in contaminated soil by dielectric barrier discharge (DBD), a fluidized-bed DBD reactor was used to degrade HCB in contaminated soil. The results showed that a discharge current pulse could be generated with a 20 μs pulse width. When the air flow rate was 4.0 L/min, the soil reached a fully fluidized state. The energy density of reactor increased with the increase of discharge voltage, which promoted HCB degradation, but increasing heating led to lower energy utilization. The HCB degradation rate reached 97.3% after 32 min while the energy density was 172.5 J/L at a discharge voltage of 16 kV. The neutral or alkaline condition was more beneficial to HCB degradation than the acidic condition. With the increase in the initial HCB concentration, the degradation rate of HCB decreased, but the absolute degradation amount increased. The degradation of HCB conformed to first-order kinetic equation. During the discharge process, the C—Cl bond was attacked by active substances, and low-substituted chlorobenzene and small molecular organic acids and other byproducts were generated, which indicated that the degradation of HCB in contaminated soil was mainly a dechlorination process. The research results have important practical significance for the remediation of actual contaminated soil.



Key wordshexachlorobenzene      dielectric barrier discharge      pulsed discharge      degradation     
Received: 21 April 2021      Published: 07 July 2022
CLC:  X 53  
Corresponding Authors: Zhen LIU     E-mail: 21828019@zju.edu.cn;zliu@zju.edu.cn
Cite this article:

Xuan TU,Shuo ZHANG,Zhen LIU,Keping YAN. Study on the degradation of hexachlorobenzene in contaminated soil by fluidized-bed non-thermal plasma. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 351-358.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.04.211     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/351


流化床式低温等离子体降解土壤中六氯苯的实验研究

针对土壤中难降解的六氯苯,开展了流化床式介质阻挡放电反应器对其降解特性的实验研究。结果表明:介质阻挡放电过程中产生了20 μs脉宽的脉冲电流。空气流速为4.0 L/min时,土壤达到充分流化状态。增加放电电压会提高反应器的能量密度,有利于六氯苯的降解,但发热会导致能量利用率降低。当放电电压增至16 kV、能量密度为172.5 J/L、放电32 min时,六氯苯降解率达到97.3%。相较于酸性土壤,中性或碱性土壤对六氯苯的降解更有利。提高土壤中六氯苯的初始含量会使其降解率降低,但绝对去除量增加。六氯苯的降解符合一级动力学方程,放电过程中C—Cl键受到活性物质攻击而断裂,生成了低取代氯苯和小分子有机酸等副产物,表明土壤中六氯苯的降解过程以脱氯为主。该结果对实现高效修复实际污染土壤具有重要的现实意义。


关键词: 六氯苯,  介质阻挡放电,  脉冲放电,  降解 
Fig. 1 Schematic diagram of DBD experimental system1: Air; 2: Mass flow meter; 3: Gas inlet; 4: Fluidized-bed reactor; 5: Gas outlet; 6: Flow indicator; 7: Bipolar microsecond pulse power supply; 8: Transformer; 9: Current probe; 10: Differential probe; 11: High voltage probe; 12: Oscilloscope.
Fig. 2 Structure diagram of fluidized-bed reactor1: High voltage electrode; 2: Gas inlet; 3: Low voltage electrode; 4: Centering plate with holes; 5: Insulating medium; 6: Gas outlet.
Fig. 3 Typical voltage and current waveforms
Fig. 4 Discharge photo of the reactor at 16 kV
Fig. 5 HCB degradation rate under different air flow rates
Fig. 6 HCB degradation rate under different discharge voltages
Fig. 7 HCB degradation rate under different soil pH
Fig. 8 HCB degradation rate under different HCB initial concentrations

放电电压

Discharge voltage/kV

空气流速Air flow rate/(L/min)w (HCB)/(mg/kg)P/Wt50/minG50/(g/(kW?h))
134.01001.6717.60.51
144.01001.9911.60.65
154.01003.039.70.51
164.010011.503.10.42
164.020011.508.00.16
164.040011.5016.80.08
Table 1 G50 values under different discharge conditions
Fig. 9 HCB degradation kinetics under different HCB initial concentrations
w (HCB)/(mg/kg)

动力学拟合方程

Kinetic fitting equation

k/min-1

回归系数(R2

Coefficient of regression (R2)

100y=-0.109 04x-0.275 050.109 040.980 7
200y=-0.041 60x-0.283 270.041 600.914 7
400y=-0.038 31x-0.028 750.038 310.997 6
Table 2 Kinetic fitting equations and parameters of HCB degradation under different HCB initial concentrations
Fig. 10 Gas chromatograms of HCB at different treatment time
[1]   SUN J T, PAN L L, TSANG D C W, et al. Organic contamination and remediation in the agricultural soils of China: a critical review[J]. Science of the Total Environment, 2018, 615: 724-740. DOI:10.1016/j.scitotenv.2017.09.271
doi: 10.1016/j.scitotenv.2017.09.271
[2]   储金宇,戈照轶,王慧娟,等.脉冲放电等离子体/黏土矿物联合修复芘污染土壤[J].高电压技术,2016,42(2):354-360. DOI:10.13336/j.1003-6520.hve.2016.02.003
CHU J Y, GE Z Y, WANG H J, et al. Remediation of pyrene polluted soil in a system combined with pulse discharge plasma and clay[J]. High Voltage Engineering, 2016, 42(2):354-360. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.2016.02.003
[3]   李国刚,李红莉.持久性有机污染物在中国的环境监测现状[J].中国环境监测,2004,20(4):53-60. DOI:10.3969/j.issn.1002-6002.2004.04.018
LI G G, LI H L. The present status of persistent organic pollutants (POPs) environmental monitoring in China[J]. Environmental Monitoring in China, 2004, 20(4): 53-60. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6002.2004.04.018
[4]   AHMADI S, GITIPOUR S, MARZANI S, et al. Microsilica-cement stabilization of organic contaminated soil: leaching behaviour of polycyclic aromatic hydrocarbons[J]. Current World Environment, 2016, 11(1): 20-27. DOI:‍10.12944/CWE.11.1.03
doi: ?10.12944/CWE.11.1.03
[5]   BAILEY R E. Global hexachlorobenzene emissions[J]. Chemosphere, 2001, 43(2): 167-182. DOI:‍10.1016/S0045-6535(00)00186-7
doi: ?10.1016/S0045-6535(00)00186-7
[6]   BALÁZS H E, SCHMID C A O, PODAR D, et al. Development of microbial communities in organochlorine pesticide contaminated soil: a post-reclamation perspective[J]. Applied Soil Ecology, 2019, 150: 103467. DOI:10.1016/j.apsoil.2019.103467
doi: 10.1016/j.apsoil.2019.103467
[7]   王慧娟,郭贺,赵文信,等.脉冲放电等离子体修复芘污染土壤的影响因素[J].高电压技术,2015,41(10):3512-3517. DOI:10.13336/j.1003-6520.hve.2015.10.045
WANG H J, GUO H, ZHAO W X, et al. Influential factors for pyrene degradation in a pulsed discharge plasma system for polluted soil remediation[J]. High Voltage Engineering, 2015, 41(10): 3512-3517. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.2015.10.045
[8]   ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. DOI:10.1016/j.chemosphere.2019.01.079
doi: 10.1016/j.chemosphere.2019.01.079
[9]   YAO Z T, LI J H, XIE H H, et al. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 2012, 16: 722-729. DOI:10.1016/j.proenv.2012.10.099
doi: 10.1016/j.proenv.2012.10.099
[10]   PANT P, PANT S. A review: advances in microbial remediation of trichloroethylene (TCE)[J]. Journal of Environmental Sciences, 2010, 22(1): 116-126. DOI:10.1016/ S1001-0742(09)60082-6
doi: 10.1016/
[11]   ZHANG H, MA D Y, QIU R L, et al. Non-thermal plasma technology for organic contaminated soil remediation: a review[J]. Chemical Engineering Journal, 2017, 313: 157-170. DOI:10.1016/j.cej.2016.12.067
doi: 10.1016/j.cej.2016.12.067
[12]   MEINERS A, LECK M, ABEL B. Efficiency enhancement of a dielectric barrier plasma discharge by dielectric barrier optimization[J]. Review of Scientific Instruments, 2010, 81(11): 113507. DOI:10.1063/1.3501963
doi: 10.1063/1.3501963
[13]   ZHANG Y Z, XIONG X Y, HAN Y, et al. Application of titanium dioxide-loaded activated carbon fiber in a pulsed discharge reactor for degradation of methyl orange[J]. Chemical Engineering Journal, 2010, 162(3): 1045-1049. DOI:10.1016/j.cej.2010.07.017
doi: 10.1016/j.cej.2010.07.017
[14]   闫克平,李树然,冯卫强,等.高电压环境工程应用研究关键技术问题分析及展望[J].高电压技术,2015,41(8):2528-2544. DOI:10.13336/j.1003-6520.hve.2015.08.006
YAN K P, LI S R, FENG W Q, et al. Analysis and prospect on key technology of high-voltage discharge for environmental engineering study and application[J]. High Voltage Engineering, 2015, 41(8): 2528-2544. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.2015.08.006
[15]   LOCKE B R, SATO M, SUNKA P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment[J]. Industrial & Engineering Chemistry Research, 2006, 45(3): 882-905. DOI:10.1021/ie050981u
doi: 10.1021/ie050981u
[16]   邵涛,章程,王瑞雪,等.大气压脉冲气体放电与等离子体应用[J].高电压技术,2016,42(3):685-705. DOI:10.13336/j.1003-6520.hve.20160308018
SHAO T, ZHANG C, WANG R X, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. (in Chinese with English abstract)
doi: 10.13336/j.1003-6520.hve.20160308018
[17]   董冰岩,聂亚林,宿雅威,等.双极性高压脉冲介质阻挡放电降解甲醛及臭氧生成质量浓度控制[J].高电压技术,2016,42(5):‍1373-1378. DOI:10.13336/j.‍1003-6520.hve.20160412001
DONG B Y, NIE Y L, SU Y W, et al. Formaldehyde degradation and ozone generating mass concentration control in bipolar high voltage pulse dielectric barrier discharge[J]. High Voltage Engineering, 2016, 42(5): 1373-1378. (in Chinese with English abstract)
doi: 10.13336/j.?1003-6520.hve.20160412001
[18]   WANG T C, REN J Y, QU G Z, et al. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation[J]. Journal of Hazardous Materials, 2016, 320: 539-546. DOI:10.1016/j.jhazmat.2016.08.067
doi: 10.1016/j.jhazmat.2016.08.067
[19]   牟睿文.介质阻挡放电与脉冲电晕放电等离子体修复多环芳烃污染土壤的研究[D].上海:东华大学,2016.
MOU R W. Remediation of PAHs contaminated soil by dielectric barrier discharge plasma and pulse corona discharge plasma[D]. Shanghai: Donghua University, 2016. (in Chinese with English abstract)
[20]   中华人民共和国环境保护部. 土壤和沉积物 有机物的提取 超声波萃取法: [S].北京:中国环境科学出版社,2017. DOI:10.3969/j.issn.1006-5377.2015.01.001
Ministry of Environmental Protection of the People’s Republic of China. Soil and Sediment:Extraction of Organic Compounds:Ultrasonic Extraction : [S]. Beijing: China Environmental Science Press, 2017. (in Chinese)
doi: 10.3969/j.issn.1006-5377.2015.01.001
[21]   TANG Q, LIN S, JIANG W J, et al. Gas phase dielectric barrier discharge induced reactive species degradation of 2,4-dinitrophenol[J]. Chemical Engineering Journal, 2009, 153(1/2/3): 94-100. DOI:10.1016/j.cej.2009.06.022
doi: 10.1016/j.cej.2009.06.022
[22]   ZHANG R B, ZHANG C, CHENG X X, et al. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor[J]. Journal of Hazardous Materials, 2007, 142(1/2): 105-110. DOI:10.1016/j.jhazmat.2006.07.071
doi: 10.1016/j.jhazmat.2006.07.071
[23]   SANG C F, SUN J Z, WANG D Z. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation[J]. Journal of Physics D: Applied Physics, 2010, 43(4): 045202. DOI:10.1088/0022-3727/43/4/045202
doi: 10.1088/0022-3727/43/4/045202
[24]   PEYROUS R. The effect of relative humidity on ozone production by corona discharge in oxygen or air-a numerical simulation-part I : oxygen[J]. Ozone Science & Engineering, 1990, 12(1): 19-40. DOI:10.1080/01919519008552453
doi: 10.1080/01919519008552453
[25]   WANG H J, ZHOU G S, GUO H, et al. Organic compounds removal in soil in a seven-needle-to-net pulsed discharge plasma system[J]. Journal of Electrostatics, 2016, 80: 69-75. DOI:10.1016/j.elstat.2016.02.002
doi: 10.1016/j.elstat.2016.02.002
[26]   JIANG N, LU N, SHANG K F, et al. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation[J]. Journal of Hazardous Materials, 2013, 262: 387-393. DOI:10.1016/j.jhazmat.2013.08.072
doi: 10.1016/j.jhazmat.2013.08.072
[27]   AGGELOPOULOS C A, TSAKIROGLOU C D, OGNIER S, et al. Non-aqueous phase liquid-contaminated soil remediation by ex situ dielectric barrier discharge plasma[J]. International Journal of Environmental Science & Technology, 2015, 12(3): 1011-1020. DOI:10.1007/s13762-013-0489-4
doi: 10.1007/s13762-013-0489-4
[28]   吉冰静,高兴保,黄启飞,等.金属氧化物降解六氯苯的活性比较及催化机理研究[J].环境科学学报,2017,37(7):2616-2622. DOI:10.13671/j.hjkxxb.2016.0470
JI B J, GAO X B, HUANG Q F, et al. Investigation of the degradation activity and mechanism of hexachlorobenzene on metal oxide[J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2616-2622. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2016.0470
[1] Jia DING,Yu LI,Baohong GUAN. Boron-doped diamond electrode modified by polytetrafluoroethylene to enhance the degradation of atrazine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 369-376.
[2] Luoqi WANG,Weijun FU,Zhengqian YE,Shanshan MA,Lizhong DING,Keli ZHAO. Evaluation of soil quality degradation in Chinese hickory production area based on geographic information system and remote sensing technologies[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 216-226.
[3] GU Chenggang, XIANG Leilei, REN Wenjie, WU Wei, LIU Chang, FANG Guodong, WANG Fang. Multi- interfacial migration/transformation and effects of phthalic acid esters in soils: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 700-712.
[4] XUE Nandong, LIU Hanbing, YANG Bing, SU Xianwei, WANG Dongqi. Progress on environmental behavior of chlorpyrifos in soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 713-726.
[5] SUN Yang,XU Huijuan,LI Xiaojing,LI Yongtao,ZHAO Lixia. Research progress in farmland ecological effects and microbial degradation of quinclorac[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 727-733.
[6] WANG Hui, HU Jinxing, QIN Zhihui, XU Xinhua, SHEN Chaofeng. Bacterial chemotaxis to organic pollutants and its influence on biodegradation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 676-684.
[7] LI Gang, DU Linna, XU Fangcheng, WANG Yang, PAN Xiu. Characteristics and mechanism of malachite green decolorization by Enterobacter sp. CV-b[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 493-501.
[8] WANG Lili, GUO Wei, FU Chunna, YAN Hong. Isolation and screening of an electrochemically active strain Bacillus cereus sp. WL027 using phenol as fuel and preliminary study on its mechanism of electricity production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 654-664.
[9] Wang Qingsong, Liu Yong, Wang Xin, Sun Hong, Yao Xiaohong, Wu Yifei, Tang Jiangwu, Ge Xiangyang. Preparation and performance study of water purification bacteria-embedded solid capsules based on texture profile analysis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 712-722.
[10] Hu Hongliang, Han Zhigang, Zhang Guoping. Biological effect of biodegradable mulch films on maize and their degradation properties.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(2): 179-188.
[11] Feng Zhuo, Wang Sheng, Bai Naling, Zhao Yuhua. Isolation and characterization of diphenyl ether degrading bacterium Sphingomonas sp. DZ-3 [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 1-6.
[12] Sun Xiao, Bao Jinsong*. Biological function and application of glucan-water dikinase: a review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 591-597.
[13] REN Sanjuan, SUN Chu, TONG Chuan, ZHAO Fei, SHU Qingyao, SHEN Shengquan. Genetic analysis and gene mapping of a rice spikelet degradation mutant (spd-hp73)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 267-273.
[14] ZHANG Mingkui, GU Guoping, WANG Yang. Degradation characteristic of different biochar materials in soil environments.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 329-335.
[15] LAI Yi yu,LI Fei,XU You ping,CAI Xin zhong. Functional analysis of an ubiquitin fusion degradation protein gene UFD1 in regulation of plant disease andstress resistance[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 21-27.