Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (1): 1-9    DOI: 10.3785/j.issn.1008-9209.2021.03.031
Reviews     
Research progress of zebrafish heart regeneration models
Weijia ZHANG(),Jinxiu LIANG,Peidong HAN()
Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1939KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Heart disease is a major threat to human health due to the high morbidity and mortality rates. As a result, the discovery of adult zebrafish heart regeneration provides a new perspective for the study and treatment of human heart diseases. This study reviewed the zebrafish heart injury models for heart regeneration, such as apex amputation, cryoinjury, genetic ablation of cardiomyocyte models and so on. In addition, we also explored the essential mechanisms underlying heart regeneration, including the spatiotemporal activation of multiple signaling pathways in different cell types, epigenetic reprogramming, coronary revascularization, activation of key development-related transcription factors, and the disassembly and reassembly of cardiomyocyte sarcomeric structure. Analysis of the mechanism of heart regeneration provides more references basis for therapeutic strategies to overcome heart disease in the future.



Key wordszebrafish      heart regeneration      heart injury model      epicardial cell      endocardial cell      fibroblasts      immune cell     
Received: 03 March 2021      Published: 04 March 2022
CLC:  Q 28  
Corresponding Authors: Peidong HAN     E-mail: zhangweijia@zju.edu.cn;hanpd@zju.edu.cn
Cite this article:

Weijia ZHANG,Jinxiu LIANG,Peidong HAN. Research progress of zebrafish heart regeneration models. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 1-9.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.03.031     OR     https://www.zjujournals.com/agr/Y2022/V48/I1/1


斑马鱼心脏再生模型及研究进展

心脏病作为一种发病率和死亡率很高的疾病,严重威胁人类身体健康。斑马鱼作为模式生物,其成体心脏再生功能的发现,为研究和治疗心脏疾病拓展了新的视角。本文综述了多种斑马鱼心脏损伤模型,包括心尖切除损伤、冰冻损伤以及心肌细胞遗传消融模型等;并深入探讨了心脏再生过程中的关键生物学过程,包括多种信号通路在不同细胞类型的时序性激活、心肌细胞表观遗传学编程、冠状血管新生、发育相关关键转录因子的激活以及心肌细胞肌节结构的解离和重构等。对心脏再生机制的解析有望为人类心脏疾病的治疗提供新的思路和干预策略。


关键词: 斑马鱼,  心脏再生,  心脏损伤模型,  心外膜细胞,  心内膜细胞,  成纤维细胞,  免疫细胞 
Fig. 1 Schematic diagram of zebrafish heart injury modelsA-D. Structures of the adult zebrafish ventricles; E. Timeline of the activation of different cell types in zebrafish heart regeneration.
[1]   PASUMARTHI K B S , FIELD L J . Cardiomyocyte cell cycle regulation[J]. Circulation Research, 2002, 90(10): 1044-1054. DOI:10.1161/01.res.0000020201.44772.67
doi: 10.1161/01.res.0000020201.44772.67
[2]   SHIBA Y J , FERNANDES S , ZHU W Z , et al . hESC-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts[J]. Nature, 2012, 489(7415): 322-325. DOI:10.1038/nature11317
doi: 10.1038/nature11317
[3]   SHIBA Y J , GOMIBUCHI T , SETO T , et al . Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625): 388-391. DOI:10 .1038/nature19815
doi: 10
[4]   KIKUCHI K , HOLDWAY J E , WERDICH A A , et al . Primary contribution to zebrafish heart regeneration by gata4 + cardiomyocytes[J]. Nature, 2010, 464(7288): 601-605. DOI:10.1038/nature08804
doi: 10.1038/nature08804
[5]   JOPLING C , SLEEP E , RAYA M , et al . Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation[J]. Nature, 2010, 464(7288): 606-609. DOI:10 .1038/nature08899
doi: 10
[6]   SADLER K C , KRAHN K N , GAUR N A , et al . Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1 [J]. PNAS, 2007, 104(5): 1570-1575. DOI:10.1073/pnas.0610774104
doi: 10.1073/pnas.0610774104
[7]   CAMERON D A . Cellular proliferation and neurogenesis in the injured retina of adult zebrafish[J]. Visual Neuroscience, 2000, 17(5): 789-797. DOI:10.1017/s0952523800175121
doi: 10.1017/s0952523800175121
[8]   JOHNSON S L , WESTON J A . Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration[J]. Genetics, 1995, 141(4): 1583-1595. DOI:10.1093/genetics/141.4.1583
doi: 10.1093/genetics/141.4.1583
[9]   POSS K D , WILSON L G , KEATING M T . Heart regeneration in zebrafish[J]. Science, 2002, 298(5601): 2188-2190. DOI:10.1126/science.1077857
doi: 10.1126/science.1077857
[10]   LEPILINA A , COON A N , KIKUCHI K , et al . A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration[J]. Cell, 2006, 127(3): 607-619. DOI:10.1016/j.cell.2006.08.052
doi: 10.1016/j.cell.2006.08.052
[11]   KIKUCHI K , HOLDWAY J E , MAJOR R J , et al . Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration[J]. Developmental Cell, 2011, 20(3): 397-404. DOI:10.1016/j.devcel.2011.01.010
doi: 10.1016/j.devcel.2011.01.010
[12]   SCHNABEL K , WU C C , KURTH T , et al . Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation[J]. PLoS ONE, 2011, 6(4): e18503. DOI:10.1371/journal.pone.0018503
doi: 10.1371/journal.pone.0018503
[13]   GONZáLEZ-ROSA J M , MARTIN V , PERALTA M , et al . Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish[J]. Development, 2011, 138(9): 1663-1674. DOI:10.1242/dev.060897
doi: 10.1242/dev.060897
[14]   WANG J H , KARRA R , DICKSON A L , et al . Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration[J]. Developmental Biology, 2013, 382(2): 427-435. DOI:10.1016/j.ydbio.2013.08.012
doi: 10.1016/j.ydbio.2013.08.012
[15]   XIAO C L , GAO L , HOU Y , et al . Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish[J]. Nature Communications, 2016, 7: 13787. DOI:10.1038/ncomms13787
doi: 10.1038/ncomms13787
[16]   SCHINDLER Y L , GARSKE K M , WANG J H , et al . Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration[J]. Development, 2014, 141(16): 3112-3122. DOI:10.1242/dev.106336
doi: 10.1242/dev.106336
[17]   KIKUCHI K , POSS K D . Cardiac regenerative capacity and mechanisms[J]. Annual Review of Cell and Development Biology, 2012, 28: 719-741. DOI:10.1146/annurev-cellbio-101011-155739
doi: 10.1146/annurev-cellbio-101011-155739
[18]   CHABLAIS F , VEIT J , RAINER G , et al . The zebrafish heart regenerates after cryoinjury-induced myocardial infarction[J]. BMC Developmental Biology, 2011, 11: 21. DOI:10.1186/1471-213X-11-21
doi: 10.1186/1471-213X-11-21
[19]   CURADO S , ANDERSON R M , JUNGBLUT B , et al . Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies[J]. Developmental Dynamics, 2007, 236(4): 1025-1035. DOI:10.1002/dvdy.21100
doi: 10.1002/dvdy.21100
[20]   ZHANG R L , HAN P D , YANG H B , et al . In vivo cardiac reprogramming contributes to zebrafish heart regeneration[J]. Nature, 2013, 498(7455): 497-501. DOI:10.1038/nature12322
doi: 10.1038/nature12322
[21]   PARENTE V , BALASSO S , POMPILIO G , et al . Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart[J]. PLoS ONE, 2013, 8(1): e53748. DOI:10.1371/journal.pone.0053748
doi: 10.1371/journal.pone.0053748
[22]   GEMBERLING M , KARRA R , DICKSON A L , et al . Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish[J]. eLife, 2015, 4: e05871. DOI:10.7554/eLife.05871
doi: 10.7554/eLife.05871
[23]   HAYDEN M S , GHOSH S . NF-κB, the first quarter-century: remarkable progress and outstanding questions[J]. Genes & Development, 2012, 26(3): 203-234. DOI:10.1101/gad.183434.111
doi: 10.1101/gad.183434.111
[24]   KARRA R , KNECHT A K , KIKUCHI K , et al . Myocardial NF-κB activation is essential for zebrafish heart regeneration[J]. PNAS, 2015, 112(43): 13255-13260. DOI:10.1073/pnas.1511209112
doi: 10.1073/pnas.1511209112
[25]   SANTOS C X C , ANILKUMAR N , ZHANG M , et al . Redox signaling in cardiac myocytes[J]. Free Radical Biology and Medicine, 2011, 50(7): 777-793. DOI:10.1016/j.freeradbiomed.2011.01.003
doi: 10.1016/j.freeradbiomed.2011.01.003
[26]   JOPLING C , SU?é G , FAUCHERRE A , et al . Hypoxia induces myocardial regeneration in zebrafish[J]. Circulation, 2012, 126(25): 3017-3027. DOI:10.1161/CIRCULATIONAHA.112.107888
doi: 10.1161/CIRCULATIONAHA.112.107888
[27]   HAFSI H , HAINAUT P . Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence[J]. Antioxidants & Redox Signaling, 2011, 15(6): 1655-1667. DOI:10.1089/ars.2010.3771
doi: 10.1089/ars.2010.3771
[28]   MA D J , TU C G , SHENG Q H , et al . Dynamics of zebrafish heart regeneration using an HPLC-ESI-MS/MS approach[J]. Journal of Proteome Research, 2018, 17(3): 1300-1308. DOI:10.1021/acs.jproteome.7b00915
doi: 10.1021/acs.jproteome.7b00915
[29]   YE S F , ZHAO T , ZHANG W , et al . p53 isoform Δ113p53 promotes zebrafish heart regeneration by maintaining redox homeostasis[J]. Cell Death and Disease, 2020, 11: 568. DOI:10.1038/s41419-020-02781-7
doi: 10.1038/s41419-020-02781-7
[30]   MAYA-RAMOS L , CLELAND J , BRESSAN M , et al . Induction of the proepicardium[J]. Journal of Developmental Biology, 2013, 1(2): 82-91. DOI:10.3390/jdb1020082
doi: 10.3390/jdb1020082
[31]   STAINIER D Y R . Zebrafish genetics and vertebrate heart formation[J]. Nature Reviews Genetics, 2001, 2(1): 39-48. DOI:10.1038/35047564
doi: 10.1038/35047564
[32]   RILEY P R , SMART N . Thymosin β4 induces epicardium-derived neovascularization in the adult heart[J]. Biochemical Society Transactions, 2009, 37(6): 1218-1220. DOI:10.1042/BST0371218
doi: 10.1042/BST0371218
[33]   WANG J H , CAO J L , DICKSON A L , et al . Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling[J]. Nature, 2015, 522(7555): 226-230. DOI:10.1038/nature14325
doi: 10.1038/nature14325
[34]   KIM J , WU Q , ZHANG Y , et al . PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts[J]. PNAS, 2010, 107(40): 17206-17210. DOI:10.1073/pnas.0915016107
doi: 10.1073/pnas.0915016107
[35]   CHOI W Y , GEMBERLING M , WANG J H , et al . In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration[J]. Development, 2013, 140(3): 660-666. DOI:10.1242/dev.088526
doi: 10.1242/dev.088526
[36]   SUGIMOTO K , HUI S P , SHENG D Z , et al . Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch[J]. eLife, 2017, 6: e24635. DOI:10.7554/eLife.24635
doi: 10.7554/eLife.24635
[37]   MüNCH J , GRIVAS D , GONZáLEZ-RAJAL á , et al . Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart[J]. Development, 2017, 144: 1425-1440. DOI:10.1242/dev.143362
doi: 10.1242/dev.143362
[38]   LI P , CAVALLERO S , GU Y , et al . IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development[J]. Development, 2011, 138(9): 1795-1805. DOI:10.1242/dev.054338
doi: 10.1242/dev.054338
[39]   ZHAO L , BORIKOVA A L , BEN-YAIR R , et al . Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration[J]. PNAS, 2014, 111(4): 1403-1408. DOI:10.1073/pnas.1311705111
doi: 10.1073/pnas.1311705111
[40]   GáLVEZ-SANTISTEBAN M , CHEN D N , ZHANG R L , et al . Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming[J]. eLife, 2019, 8: e44816. DOI:10.7554/eLife.44816
doi: 10.7554/eLife.44816
[41]   FANG Y , GUPTA V , KARRA R , et al . Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration[J]. PNAS, 2013, 110(33): 13416-13421. DOI:10.1073/pnas.1309810110
doi: 10.1073/pnas.1309810110
[42]   SNIDER P , STANDLEY K N , WANG J , et al . Origin of cardiac fibroblasts and the role of periostin[J]. Circulation Research, 2009, 105(10): 934-947. DOI:10.1161/CIRCRES AHA.109.201400
doi: 10.1161/CIRCRES
[43]   SáNCHEZ-IRANZO H , GALARDI-CASTILLA M , SANZ-MOREJóN A , et al . Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart[J]. PNAS, 2018, 115(16): 4188-4193. DOI:10.1073/pnas.1716713115
doi: 10.1073/pnas.1716713115
[44]   CHABLAIS F , JA?WI?SKA A . The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling[J]. Development, 2012, 139(11): 1921-1930. DOI:10.1242/dev.078543
doi: 10.1242/dev.078543
[45]   BEVAN L , LIM Z W, VENKATESH B , et al . Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish[J]. Cardiovascular Research, 2020, 116(7): 1357-1371. DOI:10.1093/cvr/cvz221
doi: 10.1093/cvr/cvz221
[46]   LIEN C L , SCHEBESTA M , MAKINO S , et al . Gene expression analysis of zebrafish heart regeneration[J]. PLoS Biology, 2006, 4(8): 1386-1396. DOI:10.1371/journal.pbio.0040260
doi: 10.1371/journal.pbio.0040260
[47]   DE PREUX CHARLES A S , BISE T , BAIER F , et al . Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart[J]. Open Biology, 2016, 6(7): 160102. DOI:10.1098/rsob.160102
doi: 10.1098/rsob.160102
[48]   NIETHAMMER P , GRABHER C , LOOK A T , et al . A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J]. Nature, 2009, 459(7249): 996-999. DOI:10.1038/nature08119
doi: 10.1038/nature08119
[49]   HAN P D , ZHOU X H , CHANG N N , et al . Hydrogen peroxide primes heart regeneration with a derepression mechanism[J]. Cell Research, 2014, 24(9): 1091-1107. DOI:10.1038/cr.2014.108
doi: 10.1038/cr.2014.108
[50]   HULSMANS M , CLAUSS S , XIAO L , et al . Macrophages facilitate electrical conduction in the heart[J]. Cell, 2017, 169(3): 510-522. DOI:10.1016/j.cell.2017.03.050
doi: 10.1016/j.cell.2017.03.050
[51]   LEID J , CARRELHA J , BOUKARABILA H , et al . Primitive embryonic macrophages are required for coronary development and maturation[J]. Circulation Research, 2016, 118(10): 1498-1511. DOI:10.1161/CIRCRESAHA.115.308270
doi: 10.1161/CIRCRESAHA.115.308270
[52]   SIM?ES F C , CAHILL T J , KENYON A , et al . Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair[J]. Nature Communications, 2020, 11(1): 600. DOI:10.1038/s41467-019-14263-2
doi: 10.1038/s41467-019-14263-2
[53]   DE COUTO G . Macrophages in cardiac repair: environmental cues and therapeutic strategies[J]. Experimental Molecular Medicine, 2019, 51(12): 159. DOI:10.1038/s12276-019-0269-4
doi: 10.1038/s12276-019-0269-4
[54]   JOSEFOWICZ S Z , LU L F , RUDENSKY A Y . Regulatory T cells: mechanisms of differentiation and function[J]. Annual Review of Immunology, 2012, 30: 531-564. DOI:10 .1146/annurev.immunol.25.022106.141623
doi: 10
[55]   HUI S P , SHENG D Z , SUGIMOTO K , et al . Zebrafish regulatory T cells mediate organ-specific regenerative programs[J]. Developmental Cell, 2017, 43(6): 659-672. DOI:10.1016/j.devcel.2017.11.010
doi: 10.1016/j.devcel.2017.11.010
[1] ZHANG Shouping, SHEN Wentao, WANG Lirong, ZHANG Baizhong. c-Jun protein effect on regulating CD4+ and CD8+ T cell proliferation in H1N1 influenza A virus infected mice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 722-726.
[2] YU Mengfei, WANG Wenlu, YI Jianming. Effects of 5- azacytidine-2’- deoxycytidine on the proliferation, cell cycle, and apoptosis of fetal bovine fibroblast cells[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 727-734.