Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (6): 787-796    DOI: 10.3785/j.issn.1008-9209.2020.10.301
Resource utilization & environmental protection     
Characterization of the influence of composting reactors with different operation strategies on internal temperature fields
Hao TAN(),Chen CHEN,Wenxiang LI,Foqin SUN,Dongsheng SHEN,Yuyang LONG()
Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
Download: HTML   HTML (   PDF(28135KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Three types of compositing reactors, namely A with bottom aeration, B with central aeration, and C with surrounding aeration, were designed. The effects of ambient temperatures, aeration rates, aeration positions and stirring operations on the temperature fields distributing inside the composting reactors were investigated under no-load condition, and verified by loading test with loading simulated materials. The results showed that the tested four conditions had significant impacts on the internal temperature field distribution, especially the change of the ambient temperature increased the temperature discrepancy inside the reactors. When the aeration rate was 0.75 m3/h, the internal temperature fields of the three tested reactors were evenly distributed, but the temperature field in the reactor C was the best. Overall, the aeration rate of 0.75 m3/h and the surrounding aeration were more favorable aeration strategies for the temperature field distribution. This research aims to obtain better operating parameters of the composting reactor through optimization, and provides a key basis for the treatment of organic solid waste.



Key wordscomposting reactor      temperature field      simulation      organic solid waste     
Received: 30 October 2020      Published: 25 December 2021
CLC:  X 705  
Corresponding Authors: Yuyang LONG     E-mail: z18405816045@163.com;longyy@zjgsu.edu.cn
Cite this article:

Hao TAN,Chen CHEN,Wenxiang LI,Foqin SUN,Dongsheng SHEN,Yuyang LONG. Characterization of the influence of composting reactors with different operation strategies on internal temperature fields. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 787-796.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.10.301     OR     http://www.zjujournals.com/agr/Y2021/V47/I6/787


堆肥反应器运行方式对内部温度场影响的表征

本研究针对曝气方式各异的A(底部曝气)、B(中心曝气)、C(四周曝气)3套堆肥反应器,在空载状态下考察了外环境温度、曝气速率、曝气部位和搅拌操作对堆肥反应器内部温度场分布的影响,并通过负载模拟物料试验进行验证。结果表明:供试的4种条件均会对内部温度场分布产生明显影响,尤其是外环境温度的变化会加大反应器内温度差。当曝气速率为0.75 m3/h时,供试的3套反应器内部温度场分布较均匀,但C反应器温度场优于A和B反应器。综合来看,0.75 m3/h的曝气速率、四周曝气是较利于温度场分布的曝气策略。本研究通过优化获取了堆肥反应器较优的运行参数,为有机固体废弃物处理提供了科学依据。


关键词: 堆肥反应器,  温度场,  模拟,  有机固体废弃物 
Fig. 1 Schematic diagram of composting reactors1: Motor; 2: Sampling and injection ports; 3: Seal cover; 4: Water outlet; 5: Temperature detection hole; 6: Water bath layer; 7: Oxygen detection hole; 8: Aeration tube; 9: Leachate collection device; 10: Leachate discharge outlet; 11: Universal wheel; 12: Aeration pump; 13: Inlet pipe; 14: Hot water pump; 15: Outlet pipe; 16: Temperature probe; 17: Water tank; 18: Heating rod; 19: Central control unit; 20: Aeration hole; 21: Gas flow meter; 22: Water inlet; 23: Agitating vane; 24: Exhaust port.
Fig. 2 Influence of the ambient temperature on the longitudinal temperature field inside the composting reactorsA, B, and C represent the reactor names; 30, 40, 50, and 60 represent the ambient temperature values, ℃.
Fig. 3 Influence of the ambient temperature on the profile temperature field inside the composting reactors
Fig. 4 Influence of the aeration rate on the longitudinal temperature field inside the composting reactors
Fig. 5 Influence of the aeration rate on the profile temperature field inside the composting reactorsPlease see the footnote of Fig. 4 for the details of each symbol.
Fig. 6 Influence of stirring on the longitudinal temperature field inside the composting reactorsPlease see the footnote of Fig. 2 for the details of A, B, and C.
Fig. 7 Influence of stirring on the profile temperature field inside the composting reactorsPlease see the footnote of Fig. 2 for the details of A, B, and C.
Fig. 8 Internal longitudinal temperature field of the composting reactors under loading simulated materialsA, B, and C represent the reactor names; 60, 0.25, 0.50, 0.75, 1.00, and S represent 60 ℃, 0.25 m3/h, 0.50 m3/h, 0.75 m3/h, 1.00 m3/h and stirring, respectively.
Fig. 9 Internal profile temperature field of the composting reactors under loading simulated materialsPlease see the footnote of Fig. 8 for the details of each symbol.
[1]   李龙涛,李万明,孙继民,等.城乡有机废弃物资源化利用现状及展望.农业资源与环境学报,2019,36(3):264-271. DOI:10.13254/j.jare.2018.0150
LI L T, LI W M, SUN J M, et al. Research status and prospects of the resource utilization of organic waste in urban and rural areas. Journal of Agricultural Resources and Environment, 2019,36(3):264-271. (in Chinese with English abstract)
doi: 10.13254/j.jare.2018.0150
[2]   周继豪,沈小东,张平,等.基于好氧堆肥的有机固体废物资源化研究进展.化学与生物工程,2017,34(2):13-18. DOI:10.3969/j.issn.1672-5425.2017.02.004
ZHOU J H, SHEN X D, ZHANG P, et al. Research progress on recycling of organic solid wastes based on aerobic compost. Chemistry and Bioengineering, 2017,34(2):13-18. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-5425.2017.02.004
[3]   HOU N, WEN L M, CAO H M, et al. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China. Bioresource Technology, 2017,236:20-28. DOI:10.1016/j.biortech.2017.03.166
doi: 10.1016/j.biortech.2017.03.166
[4]   SHANGGUAN H Y, FU T, WU J X, et al. Use of an in situ thermoelectric generator for electric field-assisted aerobic composting. Science of the Total Environment, 2020,742:140618. DOI:10.1016/j.scitotenv.2020.140618
doi: 10.1016/j.scitotenv.2020.140618
[5]   AYILARA M S, OLANREWAJU O S, BABALOLA O O, et al. Waste management through composting: challenges and potentials. Sustainability, 2020,12(11):4456. DOI:10.3390/su12114456
doi: 10.3390/su12114456
[6]   YANG F, LI G X, YANG Q Y, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere, 2013,93(7):1393-1399. DOI:10.1016/j.chemosphere.2013.07.002
doi: 10
[7]   YEH C K, LIN C, SHEN H C, et al. Optimizing food waste composting parameters and evaluating heat generation. Applied Sciences, 2020,10(7):2284. DOI:10.3390/app10072284
doi: 10.3390/app10072284
[8]   LIU H T, WANG L X, LEI M. Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. Bioresource Technology, 2019,273:25-33. DOI:10.1016/j.biortech.2018.10.033
doi: 10.1016/j.biortech.2018.10.033
[9]   SHEN Y J, REN L M, LI G X, et al. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Management, 2011,31(1):33-38. DOI:10.1016/j.wasman.2010.08.019
doi: 10.1016/j.wasman.2010.08.019
[10]   QASIM W, MOON B E, OKYERE F G, et al. Influence of aeration rate and reactor shape on the composting of poultry manure and sawdust. Journal of the Air and Waste Manangement Association, 2019,69(5):633-645. DOI:10.1080/10962247.2019.1569570
doi: 10.1080/10962247.2019.1569570
[11]   TONG B X, WANG X, WANG S Q, et al. Transformation of nitrogen and carbon during composting of manure litter with different methods. Bioresource Technology, 2019,293:122046. DOI:10.1016/j.biortech.2019.122046
doi: 10.1016/j.biortech.2019.122046
[12]   CAO Y, WANG X, LIU L, et al. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process. Journal of Environmental Management, 2020,264:110454. DOI:10.1016/j.jenvman.2020.110454
doi: 10.1016/j.jenvman.2020.110454
[13]   SUN Z Y, ZHANG J, ZHONG X Z, et al. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system. Waste Management, 2016,51:55-64. DOI:10.1016/j.wasman.2016.03.002
doi: 10.1016/j.wasman.2016.03.002
[14]   CHEN W W, LUO S S, DU S W, et al. Strategy to strengthen rural domestic waste composting at low temperature: choice of ventilation condition. Waste and Biomass Valorization, 2020,11(12):6649-6665. DOI:10.1007/s12649-020-00943-4
doi: 10.1007/s12649-020-00943-4
[15]   MANU M K, KUMAR R, GARG A. Decentralized composting of household wet biodegradable waste in plastic drums: effect of waste turning, microbial inoculum and bulking agent on product quality. Journal of Cleaner Production, 2019,226:233-241. DOI:10.1016/j.jclepro.2019.03.350
doi: 10.1016/j.jclepro.2019.03.350
[1] YU Haining, HUANG Haiyong, HE Chengzijing, LAY Sovichea, SHEN Shengrong. Preparation and performance evaluation of cyclodextrin bifunctional monomer molecularly imprinted polymers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 695-703.
[2] XU Yimeng, ZHU Xiaowen, LIU Zhijie, HU Yaohua, GU Fang. Field simulation and structure optimization of the air conveying system in air assisted sprayer based on computer fluid dynamics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 451-458.
[3] ZHANG Ning, ZHANG Qingguo, YU Haijing, CHENG Mengdi, DONG Shijie. Sensitivity analysis for parameters of crop growth simulation model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 107-115.
[4] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.
[5] ZHOU Jinhua, LAI Qinghui, GAO Xiaojun. Simulation analysis and experiment of roller-round brush precise seed-metering device for Panax notoginseng[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 509-516.
[6] Hu Jinbing, Wu Jianfeng, Wang Jun. Virtual simulation analysis and verification on working stability of sugarcane tail-breaking mechanism[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 483-491.
[7] Wang Jun*, Hu Jinbing, Wu Jianfeng . Overview of sugarcane harvester virtual design in China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 568-578.