Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (4): 517-526    DOI: 10.3785/j.issn.1008-9209.2020.07.281
Resource utilization & environmental protection     
Spatio-temporal variation characteristics of soil pH, nitrogen, phosphorus and potassium nutrients in Wenling City of Zhejiang Province
Jian CHEN1(),Anna DING1,Jiachun SHI2()
1.Wenling Crop Protection and Tillage Fertilizer and Energy Sources Station, Wenling 317500, Zhejiang, China
2.Zhejiang Provincial Key Laboratory of Agriculture Resource and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(10940KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Spatio-temporal variation characteristics of soil pH, soil organic matter, total nitrogen, available phosphorus and available potassium contents were determined in Wenling City of Zhejiang Province in 2006 and 2017, respectively, using the analysis methods of mathematical statistics and inverse distance weighting spatial interpolation. The results showed that the soils presented a certain acidification trend with a decrease in soil pH of 5.40%. Soil organic matter (SOM) and nitrogen, phosphorus and potassium contents showed an overall increasing trend. Available phosphorus and available potassium contents increased significantly, with increased ratios of 50.34% and 26.23%, respectively. SOM and total nitrogen contents also increased to a certain extent, increasing by 13.97% and 10.76%, respectively. The results of spatial analysis showed that the soil pH decreased in the west of Wenling, while increased in the east of Wenling. Total nitrogen contents of the soils decreased in the north of Wenling, while increased in the south of Wenling. The available phosphorus and available potassium contents increased significantly. The above results indicate that fertilizer application will be implemented according to soil pH, the abundance and deficiency of nitrogen, phosphorus and potassium, and the law of fertilizer requirements for crops. The improvement of the soil quality and soil sustainable development will be focused on.



Key wordssoil pH      soil organic matter      nitrogen, phosphorus and potassium nutrients      spatio-temporal variation characteristics     
Received: 28 July 2020      Published: 02 September 2021
CLC:  S 158.2  
Corresponding Authors: Jiachun SHI     E-mail: 7038103@qq.com;jcshi@zju.edu.cn
Cite this article:

Jian CHEN,Anna DING,Jiachun SHI. Spatio-temporal variation characteristics of soil pH, nitrogen, phosphorus and potassium nutrients in Wenling City of Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 517-526.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.07.281     OR     http://www.zjujournals.com/agr/Y2021/V47/I4/517


浙江省温岭市土壤pH及氮磷钾养分时空动态变化特征

采用数理统计和反距离权重空间插值分析方法,分别对浙江省温岭市2006年和2017年间隔11年的土壤pH、有机质、全氮、有效磷和速效钾含量数据进行时空动态变化趋势分析。结果表明:土壤呈现一定的酸化趋势,pH下降达5.40%;土壤有机质和氮磷钾养分总体上呈现增加趋势,其中土壤有效磷含量增幅最为明显,增幅高达50.34%;其次是土壤速效钾,增幅达到26.23%;同时,土壤有机质和全氮含量也有一定程度的增加,增幅分别为13.97%和10.76%。空间分析结果表明,土壤pH总体上呈现西降东升的趋势,土壤全氮含量总体上呈现北减南增现象,土壤有效磷和速效钾含量总体上都显著增加。因此,在后续全市域土壤培肥过程中,需依据土壤pH及氮磷钾养分丰缺情况,并结合所种作物的需肥规律,进行合理平衡施肥,实现全市耕地土壤质量的全面提升和土壤的可持续发展。


关键词: 土壤pH,  土壤有机质,  氮磷钾养分,  时空变化特征 
Fig. 1 Distribution maps of soil sampling sites in 2006 (A) and 2017 (B)

参量

Parameter

pH

土壤有机质

SOM/(g/kg)

全氮

TN/(g/kg)

有效磷

AP/(mg/kg)

速效钾

AK/(mg/kg)

20066.4830.292.5168.59170.28
20176.1334.522.78103.12214.95
变化趋势 Variation trend降低增加增加增加增加
增减比例 Variation ratio/%-5.4013.9710.7650.3426.23
Table 1 Descriptive statistical analysis of soil pH and nutrient content variation during 2006—2017
Fig. 2 Spatio-temporal variation distribution maps of soil pH in 2006 (A) and 2017 (B)
Fig. 3 Distribution map of soil pH variation during 11 yearsYellow-red areas mean soil pH increasing, and green areas mean soil pH decreasing.
Fig. 4 Spatio-temporal variation distribution maps of soil organic matter (SOM) in 2006 (A) and 2017 (B)
Fig. 5 Distribution map of SOM variation during 11 yearsYellow-red areas mean soil organic matter (SOM) content increasing, and green areas mean SOM content decreasing.
Fig. 6 Spatio-temporal variation distribution maps of soil total nitrogen (TN) in 2006 (A) and 2017 (B)
Fig. 7 Distribution map of soil TN variation during 11 yearsYellow-red areas mean soil total nitrogen (TN) content increasing, and green areas mean soil TN content decreasing.
Fig. 8 Spatio-temporal variation distribution maps of soil available phosphorus (AP) in 2006 (A) and 2017 (B)
Fig. 9 Distribution map of soil AP variation during 11 yearsYellow-red areas mean soil available phosphorus (AP) content increasing, and green areas mean soil AP content decreasing.
Fig. 10 Spatio-temporal variation distribution maps of soil available potassium (AK) in 2006 (A) and 2017 (B)
Fig. 11 Distribution map of soil AK variation during 11 yearsYellow-red areas mean soil available potassium (AK) content increasing, and green areas mean soil AK content decreasing.
[1]   张福锁.我国农田土壤酸化现状及影响.民主与科学,2016(6):26-27.
ZHANG F S. Current situation and influence of soil acidification in farmland in China. Journal of Democracy and Science, 2016(6):26-27. (in Chinese)
[2]   GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010. DOI:10.1126/science.1182570
doi: 10.1126/science.1182570
[3]   WEN Z, XU W, LI Q, et al. Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 2020,144:106022. DOI:10.1016/j.envint.2020.106022
doi: 10.1016/j.envint.2020.106022
[4]   朱静,黄标,孙维侠,等.长江三角洲典型地区农田土壤有机质的时空变异特征及其影响因素.土壤,2006,38(2):158-165.
ZHU J, HUANG B, SUN W X, et al. Tempo-spatial variation of soil organic matter of farmland and its affecting factors in a typical area of the Yangtze River Delta Region. Soil, 2006,38(2):158-165. (in Chinese with English abstract)
[5]   孙维侠,黄标,杨荣清,等.长江三角洲典型地区农田土壤速效钾时空演变特征及其驱动力.南京大学学报(自然科学版),2005,41(6):648-657.
SUN W X, HUANG B, YANG R Q, et al. Spatio-temporal variability of exchangeable potassium in agricultural soils and its driving factors. Journal of Nanjing University (Natural Sciences), 2005,41(6):648-657. (in Chinese with English abstract)
[6]   李大文,陈謇.温岭耕地质量.北京:中国农业科技出版社,2009.
LI D W, CHEN J. Wenling Cropland Quality. Beijing: China Agricultural Science and Technology Press, 2009. (in Chinese)
[7]   乐丽红,朱安繁,侯英杰,等.余干县耕地土壤养分时空变化特征研究.江西农业大学学报,2016,38(5):986-994. DOI:10.13836/j.jjau.2016139
YUE L H, ZHU A F, HOU Y J, et al. A study on the spatial-temporal changes of farmland soil nutrient of Yugan County. Acta Agriculturae Universitatis Jiangxiensis, 2016,38(5):986-994. (in Chinese with English abstract)
doi: 10.13836/j.jjau.2016139
[8]   阚建鸾.如皋市耕地土壤肥力的时空变化特征研究.南京:南京农业大学,2016.
KAN J L. Spatial-temporal variation of cultivated soil fertility in Rugao City. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract)
[9]   赵小敏,邵华,石庆华,等.近30年江西省耕地土壤全氮含量时空变化特征.土壤学报,2015,52(4):723-730. DOI:10.11766/trxb201406170298
ZHAO X M, SHAO H, SHI Q H, et al. Spatio-temporal variation of total N content in farmland soil of Jiangxi Province in the past 30 years. Acta Pedologica Sinica, 2015,52(4):723-730. (in Chinese with English abstract)
doi: 10.11766/trxb201406170298
[10]   鲍士旦.土壤农化分析.北京:中国农业出版社,2008.
BAO S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2008. (in Chinese)
[11]   LIU X M, ZHANG W W, ZHANG M H, et al. Spatio-temporal variations of soil nutrients influenced by an altered land tenure system in China. Geoderma, 2009,152(1/2):23-34. DOI:10.1016/j.geoderma.2009.05.022
doi: 10.1016/j.geoderma.2009.05.022
[12]   WANG Y J, LIU L, TIAN Y L, et al. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover. Soil and Tillage Research, 2020,202:104666. DOI:10.1016/j.still.2020.104666
doi: 10.1016/j.still.2020.104666
[13]   LILIAN W M, VERONICA A M, JENNIFER D, et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biology & Biochemistry, 2015,89:24-34. DOI:10.1016/j.soilbio.2015.06.016
doi: 10.1016/j.soilbio.2015.06.016
[14]   WANG H, WANG S L, ZHANG Y J, et al. Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China. Land Degradation and Development, 2018,29(9):2880-2887. DOI:10.1002/ldr.3015
doi: 10.1002/ldr.3015
[15]   方斌,吴金凤.作物种植前后土壤有机质及养分因子的空间变异分析.生态学报,2014,34(4):983-992. DOI:10.5846/stxb201209301364
FANG B, WU J F. Spatial variation analysis of soil organic matter and nutrient factor for before and after planting crops. Acta Ecologica Sinica, 2014,34(4):983-992. (in Chinese with English abstract)
doi: 10.5846/stxb201209301364
[1] LI Qingqing, LU Shanshan, ZHANG Hong, YANG Yan, XIAO Jiaxin. Physiological response to different soil pH values between Vaccinium bracteatum and Vaccinium ashei[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 469-475.
[2] Li Xuebin, Chen Lin, Fan Ruixia, Wu Xiuling, Xie Yingzhong . Effects of four typical plant community litter input on soil physical and chemical properties under the fenced condition in desert steppe[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 101-110.
[3] Chen Lin, Yang Xinguo, Song Naiping*, Li Xuebin, Zhai Deping . Effects of planting alfalfa on soil quality in desert steppe of Ningxia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 541-550.
[4] CEN Yi-lang,SONG Tao,HE Yong,BAO Yi-dan. Rapid detection method of soil organic matter contents using visible/near infrared diffuse reflectance spectral data[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 300-306.
[5] SHEN Yan,ZHENG Zi-cheng,LI Ting-xuan. Characteristics of fauna community structure and its relationship to soil physico-chemical properties in tea plantation soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(5): 503-512.