Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 519-528    DOI: 10.3785/j.issn.1008-9209.2020.01.171
Reviews     
Research progress on coupling of methanogenesis and anaerobic methane oxidation in the rumen
Xinxin XU(),Jiakun WANG()
Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1290KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Reducing methane emission from ruminants has important economic value and ecological significance. Anaerobic methane oxidation (AMO) is an important way to reduce methane emissions in different ecosystems, including wetlands, marine habitats and lakes. According to different electron acceptors, AMO can be divided into sulfate-dependent anaerobic methane oxidation (S-DAMO), nitrate/nitrite-dependent anaerobic methane oxidation (N-DAMO) and metal-dependent anaerobic methane oxidation (M-DAMO). Feeding nitrate and sulfate to ruminants also has methane-lowering effects; however, this process has always been thought to be the result of NO3 or SO42 competition for hydrogen as the electron acceptor. The thermodynamic reactions of N-DAMO and S-DAMO are superior to nitrate reduction reaction and sulfate reduction reaction, and if AMO can proceed in rumen, it will be of great significance to improve environment and feed utilization efficiency. Therefore, based on the description of the type of AMO, mechanisms of AMO and microorganisms involved, this paper compared the differences of nitrate and sulfate reducing methane production in the natural habitat and rumen, and found that AMO may occur in the rumen, which may be one of the reasons for the reduction of methane production in the rumen by nitrate and sulfate.



Key wordsrumen      methanogenesis      anaerobic methane oxidation      coupling     
Received: 17 January 2020      Published: 19 November 2020
CLC:  X 172  
Corresponding Authors: Jiakun WANG     E-mail: xuxinxin2299@163.com;jiakunwang@zju.edu.cn
Cite this article:

Xinxin XU,Jiakun WANG. Research progress on coupling of methanogenesis and anaerobic methane oxidation in the rumen. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 519-528.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.01.171     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/519


瘤胃内甲烷生成与厌氧氧化过程耦联研究进展

降低反刍动物甲烷排放具有重要的经济价值和生态意义。甲烷厌氧氧化(anaerobic methane oxidation, AMO)是湿地、海洋以及湖泊等生态系统中减少甲烷排放的重要途径。根据反应过程中电子受体的不同,AMO分为硫酸盐依赖型甲烷厌氧氧化(sulfate-dependent anaerobic methane oxidation, S-DAMO)、硝酸盐/亚硝酸盐依赖型甲烷厌氧氧化(nitrate/nitrite-dependent anaerobic methane oxidation, N-DAMO)和金属依赖型甲烷厌氧氧化(metal-dependent anaerobic oxidation of methane, M-DAMO)。饲喂反刍动物硝酸盐和硫酸盐也有降甲烷的效果,但这一过程一直被认为是NO3SO42作为电子受体竞争氢的结果。而N-DAMO和S-DAMO的热动力学反应优于硝酸盐和硫酸盐还原反应,若反刍动物瘤胃中能实现AMO,对改善环境及提高饲料利用效率都具有重要意义。为此,本文在阐述AMO类型、反应机制及其涉及的微生物的基础上,比较了自然环境和反刍动物瘤胃中硝酸盐和硫酸盐对甲烷产量影响的差异,发现AMO可能在瘤胃中发生,是硝酸盐、硫酸盐降低瘤胃甲烷产量的原因之一。


关键词: 瘤胃,  甲烷生成,  甲烷厌氧氧化,  耦联 

类型

Type

生境

Habitat

实测或推测的甲烷氧化速率

Measured or estimated

methane oxidation rate

文献

Reference

硫酸盐依赖型甲烷厌氧氧化

Sulfate-dependent anaerobic methane oxidation (S-DAMO)

废水污泥

Digested sludge

1.0 mmol/(g?d)[13]

海洋沉积物

Marine sediment

52 μmol/(cm3?a)[14]

硝酸盐/亚硝酸盐依赖型甲烷厌氧氧化

Nitrate/nitrite-dependent anaerobic methane oxidation (N-DAMO)

湿地土壤

wetland soil

0.51 g/(m2?a)[15]

河道沉积物

Lake sediment

140 μmol/(g?h)[16]

金属依赖型甲烷厌氧氧化

Metal-dependent anaerobic methane oxidation (M-DAMO)

河道沉积物

Lake sediment (Fe)

1.82 mmol/(m2?d)[17]

海洋沉积物

Marine sediment (Fe)

6 μmol/(cm3?a)[14]

海洋沉积物

Marine sediment (Mn)

14 μmol/(cm3?a)[14]

沿海沉积物

Coastal sediment (Fe)

1.32 μmol/(cm3?a)[18]
Table 1 Methane oxidation rates in the different types of anaerobic methane oxidation processes
Fig. 1 Nitrate and nitritecompetition for hydrogen, hydrogenotrophic methanogenesis and reverse methanogenesis processes[21,30,38-39]Yellow lines represent the process of NO3 and NO2 competing hydrogen; blue lines represent the pathway of hydrogenotrophic methanogenesis; and red lines represent the process of reverse methanogenesis. Fmd: Formylmethanofuran dehydrogenase; Ftr: Formylmethanofuran-H4MPT formyltransferase; Mch: Methenyl-H4MPT cyclohydrolase; Mtd: F420H2-dependent methylene-H4MPT dehydrogenase; Mer: Methylene-H4MPT reductase; Mtr: Methyl-H4MPT:coenzyme M (CoM) methyltransferase; Hdr: Coenzyme B-coenzyme M heterodisulfde (CoB-S-S-CoM) reductase; Mcr: Methyl-CoM reductase.

反应名称

Reaction name

反应方程式

Reaction equation

底物ΔG

Substrate ΔG/(kJ/mol)

甲烷生成 MethanogenesisCO2+4H2→CH4+2H2O-16.9
同型产乙酸 Homoacetogenesis2CO2+4H2→CH3COOH+2H2O-2.2
硫酸盐还原 Sulfate reductionSO42+4H2HHS+4H2O-21.1
硝酸盐还原 Nitrate reductionNO3+H2NO2+H2O-130.0
亚硝酸盐还原 Nitrite reductionNO2+3H22HNH4+2H2O-124.0
S-DAMOCH4SO42→HCO3HS+H2O-16.6
N-DAMO (NO3)5CH4+8NO38H→5CO2+4N2+14H2O-765.0
N-DAMO (NO2)3CH4+8NO28H→3CO2+4N2+10H2O-928.0
M-DAMO (Mn4)CH4+4MnO27H→HCO34Mn2+5H2O-556.0
M-DAMO (Fe3)CH48Fe3+2H2O→CO28Fe28H-454.6
Table 2 Gibbs free energy for reduction or oxidation reactions using different electron receptors[11,1448,50]

添加物

Additive

添加剂量和形式

Dose and form

降甲烷效果

Effect of reducing methane

文献

Reference

NO32.6% 5Ca(NO3)2?NH4NO3?10H2O-32%[10]
2.1% 5Ca(NO3)2?NH4NO3?10H2O-16%[52]
2.15% 5Ca(NO3)2?NH4NO3?10H2O-1.9 g/kg DMI[56]
0.53% 5Ca(NO3)2?NH4NO3?10H2O-6%[57]
1.36% 5Ca(NO3)2?NH4NO3?10H2O-13%[57]
2.11% 5Ca(NO3)2?NH4NO3?10H2O-23%[57]
5 mmol/L NO3-6.8 mL[51]
2% NaNO3-9.38 mL[58]
4% KNO3-23%或6.9 L/d[59]
SO422.6% MgSO4-16%[10]
0.93% CaSO4-19.6 L/kg DMI[60]
Table 3 Studies of reducing methane production in rumen by adding nitrate or sulfate

项目

Item

生境

Habitat

说明

Description

机制

Mechanism

自然环境

Natural habitat

微生物通过不同类型的AMO降低甲烷产量

Microorganisms reduce methane production through different types of AMO

瘤胃

Rumen

微生物与产甲烷菌通过竞争氢气来降低甲烷产量

Microorganisms reduce methane production through competing hydrogen with methanogens

微生物

Microorganism

自然环境

Natural habitat

主要包括硫酸盐还原菌、甲烷厌氧氧化古菌与NC10门细菌

Including mainly sulfate-reducing bacteria (SRB), anaerobic methanotrophic archaea (ANME) and NC10 bacteria

瘤胃

Rumen

硝酸盐还原菌与硫酸盐还原菌

Nitrate-reducing bacteria and sulfate-reducing bacteria

热动力学

Thermodynamics

自然环境与瘤胃

Natural habitat and rumen

N-DAMO与M-DAMO的吉布斯自由能均高于硝酸盐或硫酸盐还原反应

Gibbs free energy of N-DAMO and M-DAMO is higher than that of reduction of nitrate or

sulfate

Table 4 Differences in the effects of nitrate and sulfate on methane production in natural habitats and rumen[10-11,4850]
[1]   FULLER J R, JOHNSON D E. Monensin and lasalocid effects on fermentation in vitro. Journal of Animal Science, 1981,53(6):1574-1580.
[2]   KOLVER E S, ASPIN P W, JARVIS G N, et al. Fumarate reduces methane production from pasture fermented in continuous culture. Proceedings of the New Zealand Society of Animal Production, 2004,64:155-159.
[3]   ABECIA L, TORAL P G, MARTIN-GARCIA A I, et al. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science, 2012,95(4):2027-2036. DOI:10.3168/jds.2011-4831
doi: 10.3168/jds.2011-4831
[4]   HU W L, LIU J X, YE J A, et al. Effect of tea saponin on rumen fermentation in vitro. Animal Feed Science and Technology, 2005,120(3):333-339. DOI:10.1016/j.anifeedsci.2005.02.029
doi: 10.1016/j.anifeedsci
[5]   SAMINATHAN M, SIEO C C, ABDULLAH N, et al. Effects of condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid on in vitro methane production and rumen fermentation. Journal of the Science of Food and Agriculture, 2015,95(13):2742-2749. DOI:10.1002/jsfa.7016
doi: 10.1002/jsfa.7016
[6]   GARCIA-LOPEZ P M, KUNG L, ODOM J M. In vitro inhibition of microbial methane production by 9, 10-anthraquinone. Journal of Animal Science, 1996,74(9):2276-2284. DOI:10.2527/1996.7492276x
doi: 10.2527/1996.7492276x
[7]   LEE S S, HSU J T, MANTOVANI H C, et al. The effect of bovicin, HC5, a bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiology Letters, 2002,217(1):51-55. DOI:10.1016/S0378-1097(02)01044-3
doi: 10.1016/S0378-1097(02)01044-3
[8]   DOHME F, MACHMüLLER A, ESTERMANN B L, et al. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Letters in Applied Microbiology, 1999,29(3):187-192. DOI:10.1046/j.1365-2672.1999.00614.x
doi: 10.1046/j.1365-2672.1999.00614.x
[9]   WRIGHT A D G, KENNEDY P, O’NEILL C J, et al. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 2004,22(29/30):3976-3985. DOI:10.1016/j.vaccine.2004.03.053
doi: 10.1016/j.vaccine.2004.03.053
[10]   ZIJDERVELD S M VAN, GERRITS W J J, APAJALAHTI J A, et al. Nitrate and sulfate: effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. Journal of Dairy Science, 2010,93(12):5856-5866. DOI:10.3168/jds.2010-3281
doi: 10.3168/jds.2010-3281
[11]   沈李东,胡宝兰,郑平.甲烷厌氧氧化微生物的研究进展. 土壤学报,2011,48(3):619-628. DOI:10.11766/trxb201004050120
SHEN L D, HU B L, ZHENG P. Progress in study on microorganisms responsible for anaerobic oxidation of methane. Acta Pedologica Sinica, 2011,48(3):619-628. (in Chinese with English abstract)
doi: 10.11766/trxb201004050120
[12]   THAUER R K. Functionalization of methane in anaerobic microorganisms. Angewandte Chemie-International Edition, 2010,49(38):6712-6713. DOI:10.1002/anie.201002967
doi: 10.1002/anie.201002967
[13]   LI L, XUE S, XI J R. Anaerobic oxidation of methane coupled to sulfate reduction: consortium characteristics and application in co-removal of H2S and methane. Journal of Environmental Sciences-China, 2019,76:238-248. DOI:10.1016/j.jes.2018.05.006
doi: 10.1016/j.jes.2018.05.006
[14]   BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-dependent marine methane oxidation. Science, 2009,325(5937):184-187. DOI:10.1126/science.1169984
doi: 10.1126/science.1169984
[15]   HU B L, SHEN L D, LIAN X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. PNAS, 2014,111(12):4495-4500. DOI:10.1073/pnas.1318393111
doi: 10.1073/pnas.1318393111
[16]   RAGHOEBARSING A A, POL A, DE PAS-SCHOONEN K T VAN, et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006,440(7086):918-921. DOI:10.1038/nature04617
doi: 10.1038/nature04617
[17]   NORDI K A, THAMDRUP B, SCHUBERT C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnology and Oceanography, 2013,58(2):546-554. DOI:10.4319/lo.2013.58.2.0546
doi: 10.4319/lo.2013.58.2.0546
[18]   EGGER M, RASIGRAF O, SAPART C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science and Technology, 2015,49(1):277-283. DOI:10.1021/es503663z
doi: 10.1021/es503663z
[19]   ORPHAN V J, HINRICHS K U, USSLER W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 2001,67(4):1922-1934. DOI:10.1128/aem.67.4.1922-1934.2001
doi: 10.1128/aem.67.4.1922-1934.2001
[20]   KNITTEL K, LOSEKANN T, BOETIUS A, et al. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 2005,71(1):467-479. DOI:10.1128/AEM.71.1.467-479.2005
doi: 10.1128/AEM.71.1.467-479.2005
[21]   TIMMERS P H A, WELTE C U, KOEHORST J J, et al. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea, 2017(17):1-22. DOI:10.1155/2017/1654237
doi: 10.1155/2017/1654237
[22]   MILLS H J, HODGES C, WILSON K, et al. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiology Ecology, 2003,46(1):39-52. DOI:10.1016/S0168-6496(03)00191-0
doi: 10.1016/S0168-6496(03)00191-0
[23]   LLOYD K G, LAPHAM L, TESKE A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Applied and Environmental Microbiology, 2006,72(11):7218-7230. DOI:10.1128/AEM.00886-06
doi: 10.1128/AEM.00886-06
[24]   KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 2009,63(1):311-334. DOI:10.1146/annurev.micro.61.080706.093130
doi: 10.1146/annurev.micro.61.080706.093130
[25]   MICHAELIS W, SEIFERT R, NAUHAUS K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 2002,297(5583):1013-1015. DOI:10.1126/science.1073774
doi: 10.1126/science.1073774
[26]   LOSEKANN T, KNITTEL K, NADALIG T, et al. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Applied and Environmental Microbiology, 2007,73(10):3348-3362. DOI:10.1128/AEM.00016-07
doi: 10.1128/AEM.00016-07
[27]   NIEMANN H, LOSEKANN T, DE BEER D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 2006,443(7113):854-858. DOI:10.1038/nature05227
doi: 10.1038/nature05227
[28]   SCHELLER S, GOENRICH M, BOECHER R, et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 2010,465(7298):606-608. DOI:10.1038/nature09015
doi: 10.1038/nature09015
[29]   THAUER R K. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Current Opinion in Microbiology, 2011,14(3):292-299. DOI:10.1016/j.mib.2011.03.003
doi: 10.1016/j.mib.2011.03.003
[30]   HAROON M F, HU S H, SHI Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013,500(7464):567-570. DOI:10.1038/nature12375
doi: 10.1038/nature12375
[31]   VALENTINE D L, REEBURGH W S, BLANTON D C. A culture apparatus for maintaining H2 at sub-nanomolar concentrations. Journal of Microbiological Methods, 2000,39(3):243-251. DOI:10.1016/S0167-7012(99)00125-6
doi: 10.1016/S0167-7012(99)00125-6
[32]   HINRICHS K U, HAYES J M, SYLVA S P, et al. Methane-consuming archaebacteria in marine sediments. Nature, 1999,398(6730):802-805.
[33]   VALENTINE D L, REEBURGH W S. New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2000,2(5):477-484. DOI:10.1046/j.1462-2920.2000.00135.x
doi: 10.1046/j.1462-2920.2000.00135.x
[34]   MORAN J J, BEAL E J, VRENTAS J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 2008,10(1):162-173. DOI:10.1111/j.1462-2920.2007.01441.x
doi: 10.1111/j.1462-2920.2007.01441.x
[35]   HOEHLER T M, ALPERIN M J, ALBERT D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 1994,8(4):451-463. DOI:10.1029/94gb01800
doi: 10.1029/94gb01800
[36]   ETTWIG K F, SHIMA S, DE PASSCHOONEN K T VAN, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environmental Microbiology, 2008,10(11):3164-3173. DOI:10.1111/j.1462-2920.2008.01724.x
doi: 10.1111/j.1462-2920.2008.01724.x
[37]   SMITH R L, HOWES B L, GARABEDIAN S P. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Applied and Environmental Microbiology, 1991,57(7):1997-2004.
[38]   乔升民,乔君毅,谭支良.反刍动物瘤胃甲烷生成机制及调控措施研究进展. 中国草食动物科学,2014,34(1):44-48. DOI:10.3969/j.issn.2095-3887.2014.01.014
QIAO S M, QIAO J Y, TAN Z L. An overview on methane biochemistry mechanism and regulation in ruminants. China Herbivore Science, 2014,34(1):44-48. (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-3887.2014.01.014
[39]   周怿,刁其玉.反刍动物瘤胃甲烷气体生成的调控. 草食家畜,2008(4):21-24.
ZHOU Y, DIAO Q Y. Manipulation for the methane production in rumen. Grass-Feeding Livestock, 2008(4):21-24. (in Chinese with English abstract)
[40]   ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010,464(7288):543-548. DOI:10.1038/nature08883
doi: 10.1038/nature08883
[41]   TORRES N T, OCH L M, HAUSER P C, et al. Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Environmental Science: Processes and Impacts, 2014,16(4):879-889. DOI:10.1039/c3em00676j
doi: 10.1039/c3em00676j
[42]   CROWE S A, KATSEV S, LESLIE K, et al. The methane cycle in ferruginous Lake Matano. Geobiology, 2011,9(1):61-78. DOI:10.1111/j.1472-4669.2010.00257.x
doi: 10.1111/j.1472-4669.2010.00257.x
[43]   ETTWIG K F, ZHU B L, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. PNAS, 2016,113(45):12792-12796. DOI:10.1073/pnas.1609534113
doi: 10.1073/pnas.1609534113
[44]   SCHELLER S, YU H, CHADWICK G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016,351(6274):703-707. DOI:10.1126/science.aad7154
doi: 10.1126/science.aad7154
[45]   CAI C, LEU A O, XIE G J, et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(Ⅲ) reduction. The ISME Journal, 2018,12(8):1929-1939. DOI:10.1038/s41396-018-0109-x
doi: 10.1038/s41396-018-0109-x
[46]   SOO V W C, MCANULTY M J, TRIPATHI A, et al. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microbial Cell Factories, 2016,15(1):11. DOI:10.1186/s12934-015-0397-z
doi: 10.1186/s12934-015-0397-z
[47]   郭嫣秋,胡伟莲,刘建新.瘤胃甲烷菌及甲烷生成的调控. 微生物学报,2005,45(1):145-148.
GUO Y Q, HU W L, LIU J X. Methanogens and manipulation of methane production in the rumen. Acta Microbiologica Sinica, 2005,45(1):145-148. (in Chinese with English abstract)
[48]   UNGERFELD E M, KOHN R A. The role of thermodynamics in the control of ruminal fermentation//SEJRSEN K, HVELPLUND T, NIELSEN M O. Ruminant Physiology. Wageningen, the Netherlands: Wageningen Academic Publishers, 2006:55-85.
[49]   JONES G A. Dissimilatory metabolism of nitrate by the rumen microbiota. Canadian Journal of Microbiology, 1972,18(12):1783-1787.
[50]   CALDWELL S L, LAIDLER J R, BREWER E A, et al. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science and Technology, 2008,42(18):6791-6799. DOI:10.1021/es800120b/
doi: 10.1021/es800120b/
[51]   PATRA A K, YU Z T. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresource Technology, 2014,155:129-135. DOI:10.1016/j.biortech.2013.12.099
doi: 10.1016/j.biortech.2013.12.099
[52]   ZIJDERVELD S M VAN, GERRITS W J J, DIJKSTRA J, et al. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. Journal of Dairy Science, 2011,94(8):4028-4038. DOI:10.3168/jds.2011-4236
doi: 10.3168/jds.2011-4236
[53]   JANSSEN P H, KIRS M. Structure of the archaeal community of the rumen. Applied and Environmental Microbiology, 2008,74(12):3619-3625. DOI:10.1128/AEM.02812-07
doi: 10.1128/AEM
[54]   JARVIS G N, STROMPL C, BURGESS D M, et al. Isolation and identification of ruminal methanogens from grazing cattle. Current Microbiology, 2000,40(5):327-332. DOI:10.1007/s002849910065
doi: 10.1007/s002849910065
[55]   郭嫣秋.瘤胃产甲烷菌定量检测与微生物菌群调控研究.杭州:浙江大学,2008:16-18.
GUO Y Q. Quantification of methanogens and manipulation of microbial community in the rumen. Hangzhou: Zhejiang University, 2008:16-18. (in Chinese with English abstract)
[56]   DUTHIE C A, TROY S M, HYSLOP J J, et al. The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal, 2017,12(2):280-287. DOI:10.1017/s175173111700146x
doi: 10.1017/s175173111700146x
[57]   OLIJHOEK D W, HELLWING A L F, BRASK M, et al. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. Journal of Dairy Science, 2016,99(8):6191-6205. DOI:10.3168/jds.2015-10691
doi: 10.3168/jds.2015-10691
[58]   NGUYEN S H, LI L, HEGARTY R S. Effects of rumen protozoa of Brahman heifers and nitrate on fermentation and in vitro methane production. Asian-Australasian Journal of Animal Sciences, 2016,29(6):807-813. DOI:10.5713/ajas.15.0641
doi: 10.5713/ajas.15
[59]   NOLAN J V, HEGARTY R S, HEGARTY J S, et al. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Animal Production Science, 2010,50(8):801-806. DOI:10.1071/AN09211
doi: 10.1071/AN09211
[60]   JUDY J V, BACHMAN G C, BROWN-BRANDL T M, et al. Reducing methane production with corn oil and calcium sulfate: responses on whole-animal energy and nitrogen balance in dairy cattle. Journal of Dairy Science, 2019,102(3):2054-2067. DOI:10.3168/jds.2018-14567
doi: 10.3168/jds.2018-14567
[61]   WU M L, ETTIWIG K F, JETTEN M S, et al. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochemical Society Transactions, 2011,39(1):243-248.
[62]   沈李东.亚硝酸盐型甲烷厌氧氧化微生物特性研究进展. 环境科学,2015,36(3):1133-1140. DOI:10.13227/j.hjkx.2015.03.049
SHEN L D. Research progress on microbial properties of nitrite-dependent anaerobic methane-oxidising bacteria. Environmental Science, 2015,36(3):1133-1140. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.2015.03.049
[63]   ZHOU Z M, MENG Q X, YU Z T. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Applied and Environmental Microbiology, 2011,77(8):2634-2639. DOI:10.1128/AEM.02779-10
doi: 10.1128/AEM.02779-10
[1] Ge GAO,Jiakun WANG. Research advances in polysaccharide utilization loci of rumen microorganism[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 263-270.
[2] FENG Jiayin, ZHU Min, HE Yan. Key microbial functional genes and their diversity involved in soil typical reduction processes: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 663-675.
[3] Jiao Yang, Huang Wenming, Guo Haiming, Ye Jun'an. Effects of Sapindoside-containing concentrate on productive performance and rumen fermentation in heifers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 358-364.
[4] Liu Xiaogang1*, Xu Hang1, Cheng Jinhuan2, Jin Longjie1, Yang Qiliang1, Huang Zhumei1. Coupling effects of water and fertilization on growth and water use of Coffea arabica seedling[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 33-40.