Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 625-636    DOI: 10.3785/j.issn.1008-9209.2019.11.101
Agricultural engineering     
Simulation test and optimization for structural parameters of circular arc gear discharging fertilizer apparatus
Guoqiang DUN1(),Zhiyong GAO2,Yanling GUO1(),Yuxuan LIU1,Ning MAO1,Wenyi JI3
1.College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
2.College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
3.Engineering College, Northeast Agricultural University, Harbin 150030, China
Download: HTML   HTML (   PDF(5441KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the uniformity of the flow when fertilizer apparatus is working, a kind of fertilizer apparatus owned circular arc gears was designed. Taking the circular arc gear discharging fertilizer apparatus as the research object, this study used discrete element method (DEM) simulation to analyze the influence of two key components including the arc radius of concave-groove of circular arc gear discharging fertilizer (r1) and the minimal length between two mutual meshing arc gears (l). The results indicated that the arc radius of concave-groove of circular arc gear discharging fertilizer had significant effect on the coefficient of determination of discharging fertilizer amount in unit time, and the minimal length between two mutual meshing arc gears had significant effect on the coefficient of variation of the stability of fertilizer sowing amount. The optimum structural parameters were 8.54 mm as the arc radius of concave-groove and 5.22 mm as the minimal length between two mutual meshing arc gears. Upon this circumstance, the coefficient of variation was 0.28, and the coefficient of determination was 0.997 2. The optimum structure was selected to do the bench test. The results indicated that the coefficient of variation of the quality changes of discharging fertilizer was 0.27, and the coefficient of determination of fertilizer discharging amount in unit time was 0.998 0. The results of simulation experiment were basically consistent with the real result.



Key wordsagricultural machinery      circular arc gear discharging fertilizer apparatus      discrete element method      structural parameter      fertilizing performance     
Received: 10 November 2019      Published: 19 November 2020
CLC:  S 224.21  
Corresponding Authors: Yanling GUO     E-mail: dunguoqiang1986@163.com;guo.yl@hotmail.com
Cite this article:

Guoqiang DUN,Zhiyong GAO,Yanling GUO,Yuxuan LIU,Ning MAO,Wenyi JI. Simulation test and optimization for structural parameters of circular arc gear discharging fertilizer apparatus. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 625-636.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.11.101     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/625


圆弧齿轮排肥器圆弧结构参数仿真试验及优化

为保证排肥器排肥流量的均匀性,设计了一种圆弧齿轮排肥器。运用离散元仿真技术,以圆弧齿轮排肥器为研究对象,分析了圆弧排肥齿轮的轮槽圆弧半径r1和两圆弧排肥齿轮之间的最小槽长l这2个关键因素对排肥器排肥性能的影响。试验结果表明:圆弧排肥齿轮的轮槽圆弧半径对单位时间排肥量的决定系数影响显著,两圆弧排肥齿轮之间的最小槽长对排肥量稳定性变异系数影响显著,最优的结构参数为r1=8.54 mm,l=5.22 mm,此时,变异系数为0.28,决定系数为0.997 2。选择最优结构进行台架试验,排肥量稳定性变异系数为0.27,单位时间排肥量的决定系数为0.998 0,仿真试验结果和台架试验结果基本吻合。


关键词: 农业机械,  圆弧齿轮排肥器,  离散元法,  结构参数,  排肥性能 
Fig. 1 Simplifying treatment of contact forces of particle to particle (or particle to wall) by soft-sphere model
Fig. 2 Comparison of two fertilizer apparatuses’ structuresA. Structure diagram of outer groove-wheel discharging fertilizer apparatus; B. Structure diagram of circular arc gear discharging fertilizer apparatus. 1: Shell of outer groove-wheel fertilizer apparatus; 2: Outer groove-wheel of discharging fertilizer; 3: Tongue of discharging fertilizer; 4: Shell of circular arc gear fertilizer apparatus; 5: Hole of driving hexagonal shaft; 6: Shaft of driven gear; 7: Shaft of follower gear; 8: Circular arc gear of discharging fertilizer.
Fig. 3 Comparison of two fertilizer apparatuses’ discharging effectsA. Schematic diagram of discharging fertilizer effect of outer groove-wheel discharging fertilizer apparatus; B. Schematic diagram of discharging fertilizer effect of circular arc gear discharging fertilizer apparatus.
Fig. 4 Design parameters of fertilizer apparatus
Fig. 5 Diagram of parameter calculation
Fig. 6 Influence of r1 and l on the circular arc discharging fertilizer gear’s shape

颗粒参数

Particle parameter

数值

Value

平均质量 Average mass/g0.011
平均体积 Average volume/mm38.580
平均半径 Average radius/mm1.270
半径标准差 Standard deviation of radius/mm0.290
Table 1 Setting of particle parameters in EDEM
项目 Item颗粒属性 Particle property数值 Value

尿素颗粒

Urea particle

泊松比 Poisson’s ratio0.25
剪切模量 Shear modulus/MPa28
密度 Density/(kg/m3)1 283

排肥器

Fertilizer apparatus

泊松比 Poisson’s ratio0.43
剪切模量 Shear modulus/MPa1 300
密度 Density/(kg/m3)1 240

颗粒-颗粒

Particle-particle

恢复系数Coefficient of restitution0.11
静摩擦系数 Coefficient of static friction0.30
滚动摩擦系数 Coefficient of rolling friction0.10

颗粒-排肥器

Particle-fertilizer apparatus

恢复系数 Coefficient of restitution0.41
静摩擦系数 Coefficient of static friction0.32
滚动摩擦系数 Coefficient of rolling friction0.18
Table 2 Setting of variable parameters in EDEM
Fig. 7 Model of simulation geometry1: Particle factory; 2: Urea particle; 3: Fertilizer board; 4: Circular arc gear of discharging fertilizer; 5: Shell of fertilizer apparatus; 6: Collection device of fertilizer; 7: Monitoring grid (b); 8: Monitoring grid (a). EDEM: Engineering discrete element method.
Fig. 8 Mass change of fertilizer particle from monitoring grid (a) in single experiment
Fig. 9 Mass change of fertilizer accumulation from monitoring grid (b) in single experiment

水平

Level

因素 Factor

圆弧排肥齿轮的

轮槽圆弧半径

Arc radius of concave-groove

of circular arc gear

discharging fertilizer (r1)/mm

两圆弧排肥齿轮

之间的最小槽长

Minimal length of two

mutual meshing arc

gears (l)/mm

+γ117
+1107
095
-184
γ73
Table 3 Experimental factors and levels

编号

Identifier

自变量

Independent variable

试验指标

Test indicator

x1x2σR2
1-1-10.3990.995 1
21-10.4700.983 5
3-110.4820.993 8
4110.2950.985 3
5-1.41400.3560.993 8
61.41400.3640.978 2
70-1.4140.6700.998 0
801.4140.3770.990 8
9000.3240.995 4
10000.2740.996 9
11000.2960.993 9
12000.2720.998 7
13000.3000.998 5
14000.2610.996 9
15000.2970.991 4
16000.2640.998 6
Table 4 Experimental schemes and results of quadratic orthogonal rotary

来源

Source

平方和

Sum of squares

自由度

Degree of freedom

均方和

Sum of mean squares

F

F value

P

P value

模型 Model0.17070.02438.50<0.000 1
x13.191×10-513.191×10-50.050.828 1
x20.04310.04367.54<0.000 1
x1x20.01710.01726.120.000 9
x126.916×10-316.916×10-310.910.010 8
x220.09910.099156.22<0.000 1
x12x20.01310.01320.340.002 0
x1x222.021×10-312.021×10-33.190.112 0
失拟 Lack of fit5.070×10-315.070×10-33.870.089 9
误差 Pure error1.805×10-374.665×10-4
总和 Sum0.18015
Table 5 Variance analysis of the influence of each factor on the stability coefficient of variation of discharging fertilizer in monitoring grid (a)

来源

Source

平方和

Sum of squares

自由度

Degree of freedom

均方和

Sum of mean squares

F

F value

P

P value

模型 Model4.758×10-459.516×10-515.150.000 2
x12.222×10-412.222×10-435.000.000 1
x21.115×10-511.115×10-536.000.205 0
x1x22.402×10-612.402×10-61.840.550 2
x122.292×10-412.292×10-40.380.000 1
x221.041×10-511.041×10-536.480.227 1
失拟 Lack of fit1.564×10-535.215×10-61.660.544 6
误差 Pure error4.719×10-576.741×10-60.77
总和 Sum5.386×10-415
Table 6 Variance analysis of the influence of each factor on the coefficient of determination of discharging fertilizer per unit time in monitoring grid (b)
Fig. 10 Response surface map of the minimal length of two mutual meshing arc gears l and the arc radius of concave-groove r1 to coefficient of variation
Fig. 11 Response surface map of the minimal length of two mutual meshing arc gears l and the arc radius of concave-groove r1 to coefficient of determination
Fig. 12 Three-dimension printing model and experimental equipment1: Circular arc gears of discharging fertilizer; 2: Shell; 3: Straight involute cylindrical gear; 4: Box of fertilizer apparatus; 5: Frequency transformer; 6: Electric machinery used to drive fertilizer apparatus; 7: Urea particle; 8: Conveyor belt; 9: Electric machinery used to drive conveyor belt; 10: Rack in experiment.
[1]   陆文聪,刘聪.化肥污染对粮食作物生产的环境惩罚效应. 中国环境科学,2017,37(5):1988-1994.
LU W C, LIU C. The “environmental punishment” effect of fertilize pollution in grain crop production. China Environ-mental Science, 2017,37(5):1988-1994. (in Chinese with English abstract)
[2]   梁方,杨淦光,许丰,等.外槽轮式播种机播量控制系统设计与试验. 农机化研究,2019,41(10):153-157. DOI:10.3969/j.issn.1003-188X.2019.10.028
LIANG F, YANG G G, XU F, et al. The seeding rate control system design and experiment of the external groove wheel seeder. Journal of Agricultural Mechanization Research, 2019,41(10):153-157. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2019.10.028
[3]   顿国强,于春玲,杨永振,等.外槽轮排肥器排肥离散元仿真及排肥舌参数优化. 湖南农业大学学报(自然科学版),2018,44(6):661-665. DOI:10.13331/j.cnki.jhau.2018.06.015
DUN G Q, YU C L, YANG Y Z, et al. Discharging characteristic test of outer-groove wheel fertilizer and parameter optimization of fertilizer tongue by discrete element simulation. Journal of Hunan Agricultural University (Natural Sciences), 2018,44(6):661-665. (in Chinese with English abstract)
doi: 10.13331/j.cnki.jhau.2018.06.015
[4]   杨洲,朱卿创,孙健峰,等.基于EDEM和3D打印成型的外槽轮排肥器排肥性能研究. 农机化研究,2018,40(5):175-180. DOI:10.3969/j.issn.1003-188X.2018.05.032
YANG Z, ZHU Q C, SUN J F, et al. Study on the performance of fluted roller fertilizer distributor based on EDEM and 3D printing. Journal of Agricultural Mechanization Research, 2018,40(5):175-180. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2018.05.032
[5]   张涛,刘飞,刘月琴,等.离散元模拟外槽轮排肥器排量分析. 农机化研究,2015,37(9):198-201. DOI:10.3969/j.issn.1003-188X.2015.09.046
ZHANG T, LIU F, LIU Y Q, et al. Discrete element simulation of outer groove wheel type fertilizer discharging device capacity analysis. Journal of Agricultural Mechanization Research, 2015,37(9):198-201. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2015.09.046
[6]   汪博涛,白璐,丁尚鹏,等.外槽轮排肥器关键工作参数对排肥量影响的仿真与试验研究. 中国农机化学报,2017,38(10):1-6, 23. DOI:10.13733/j.jcam.issn.2095-5553.2017.10.001
WANG B T, BAI L, DING S P, et al. Simulation and experimental study on impact of fluted-roller fertilizer key parameters on fertilizer amount. Journal of Chinese Agricultural Mechanization, 2017,38(10):1-6, 23. (in Chinese with English abstract)
doi: 10.13733/j.jcam.issn.2095-5553.2017.10.001
[7]   吕昊.外槽轮排肥器优化设计新方法研究.长春:吉林大学,2014.
Lü H. A new kind of method for the optimized design of outer groove-wheel fertilizer apparatuses. Changchun: Jinlin University, 2014. (in Chinese with English abstract)
[8]   胡建平,郭坤,周春健,等.磁吸滚筒式排种器种箱振动供种仿真与试验. 农业机械学报,2014,45(8):61-65. DOI:10.6041/j.issn.1000-1298.2014.08.010
HU J P, GUO K, ZHOU C J, et al. Simulation and experiment of supplying seeds in box of magnetic precision cylinder-seeder. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(8):61-65. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2014.08.010
[9]   陈进,周韩,赵湛,等.基于EDEM的振动种盘中水稻种群运动规律研究. 农业机械学报,2011,42(10):79-83, 100.
CHEN J, ZHOU H, ZHAO Z, et al. Analysis of rice seeds motion on vibrating plate using EDEM. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(10):79-83, 100. (in Chinese with English abstract)
[10]   王国强,郝万军,王继新.离散单元法及其在EDEM上的实践.西安:西北工业大学出版社,2010.
WANG G Q, HAO W J, WANG J X. Discrete Element Method and Its Application in EDEM. Xi’an: Northwestern Polytechnical University Press, 2010. (in Chinese)
[11]   BENN D I, ?STR?M J, ZWINGER T, et al. Melt-under-cutting and buoyancy-driven calving from tidewater glaciers: new insights from discrete element and continuum model simulations. Journal of Glaciology, 2017,63(240):691-702. DOI:10.1017/jog.2017.41
doi: 10.1017/jog.2017.41
[12]   SHI Y W, CHEN M, WANG X C, et al. Numerical simulation of spreading performance and distribution pattern of centrifugal variable-rate fertilizer applicator based on DEM software. Computers and Electronics in Agriculture, 2018,144:249-259. DOI:10.1016/j.compag.2017.12.015
doi: 10.1016/j.compag.2017.12.015
[13]   方会敏,姬长英,张庆怡,等.基于离散元法的旋耕刀受力分析. 农业工程学报,2016,32(21):54-59. DOI:10.11975/j.issn.1002-6819.2016.21.00
FANG H M, JI C Y, ZHANG Q Y, et al. Force analysis of rotary blade based on discrete element method. Transactions of the CSAE, 2016,32(21):54-59. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2016.21.00
[14]   贺一鸣,吴明亮,向伟,等.离散元法在农业工程领域的应用进展. 中国农学通报,2017,33(20):133-137.
HE Y M, WU M L, XIANG W, et al. Application progress of discrete element method in agricultural engineering. Chinese Agricultural Science Bulletin, 2017,33(20):133-137. (in Chinese with English abstract)
[15]   邱轶兵.试验设计与数据处理.合肥:中国科学技术大学出版社,2008.
QIU Y B. Experiment Design and Data Processing. Hefei: Press of University of Science and Technology of China, 2008. (in Chinese)
[16]   廖庆喜,张朋玲,廖宜涛,等.基于EDEM的离心式排种器排种性能数值模拟. 农业机械学报,2014,45(2):109-114. DOI:10.6041/j.issn.1000-1298.2014.02.01
LIAO Q X, ZHANG P L, LIAO Y T, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on EDEM. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(2):109-114. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2014.02.01
[17]   GUNARAJ V, MURUGAN N. Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes. Journal of Materials Processing Technology, 1999,88(1/2/3):266-275.
[18]   周桂霞,汪春,张伟,等.基于二次正交旋转回归试验的深松铲关键参数建模. 农业机械学报,2006,37(10):86-89.
ZHOU G X, WANG C, ZHANG W, et al. Mathematic model of deep-shovel with critical structure parameter based on two times orthogonal rotational regressive tests. Transactions of the Chinese Society for Agricultural Machinery, 2006,37(10):86-89. (in Chinese with English abstract)
No related articles found!